1 / | | 2 | 2*x | x*e dx | / 0
Integral(x*exp(2*x^2), (x, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | 2 | 2 2*x | 2*x e | x*e dx = C + ----- | 4 /
2 1 e - - + -- 4 4
=
2 1 e - - + -- 4 4
-1/4 + exp(2)/4
Use the examples entering the upper and lower limits of integration.