Integral of x*cosx/sinx dx
The solution
The answer (Indefinite)
[src]
/ /
| |
| x*cos(x) | x*cos(x)
| -------- dx = C + | -------- dx
| sin(x) | sin(x)
| |
/ /
∫sin(x)xcos(x)dx=C+∫sin(x)xcos(x)dx
1
/
|
| x*cos(x)
| -------- dx
| sin(x)
|
/
0
0∫1sin(x)xcos(x)dx
=
1
/
|
| x*cos(x)
| -------- dx
| sin(x)
|
/
0
0∫1sin(x)xcos(x)dx
Integral(x*cos(x)/sin(x), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.