Mister Exam

Integral of x*arctgx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  x*acot(x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} x \operatorname{acot}{\left(x \right)}\, dx$$
Integral(x*acot(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                  2        
 |                    x   acot(x)   x *acot(x)
 | x*acot(x) dx = C + - + ------- + ----------
 |                    2      2          2     
/                                             
$$\int x \operatorname{acot}{\left(x \right)}\, dx = C + \frac{x^{2} \operatorname{acot}{\left(x \right)}}{2} + \frac{x}{2} + \frac{\operatorname{acot}{\left(x \right)}}{2}$$
The graph
The answer [src]
1/2
$$\frac{1}{2}$$
=
=
1/2
$$\frac{1}{2}$$
1/2
Numerical answer [src]
0.5
0.5
The graph
Integral of x*arctgx dx

    Use the examples entering the upper and lower limits of integration.