Integral of 15xarctgxdx dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=atan(x) and let dv(x)=15x.
Then du(x)=x2+11.
To find v(x):
-
The integral of a constant times a function is the constant times the integral of the function:
∫15xdx=15∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: 215x2
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2(x2+1)15x2dx=215∫x2+1x2dx
-
Rewrite the integrand:
x2+1x2=1−x2+11
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫1dx=x
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x2+11)dx=−∫x2+11dx
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), True), (ArccothRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False), (ArctanhRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False)], context=1/(x**2 + 1), symbol=x)
So, the result is: −atan(x)
The result is: x−atan(x)
So, the result is: 215x−215atan(x)
-
Add the constant of integration:
215x2atan(x)−215x+215atan(x)+constant
The answer is:
215x2atan(x)−215x+215atan(x)+constant
The answer (Indefinite)
[src]
/ 2
| 15*x 15*atan(x) 15*x *atan(x)
| 15*x*atan(x) dx = C - ---- + ---------- + -------------
| 2 2 2
/
∫15xatan(x)dx=C+215x2atan(x)−215x+215atan(x)
The graph
15 15*pi
- -- + -----
2 4
−215+415π
=
15 15*pi
- -- + -----
2 4
−215+415π
Use the examples entering the upper and lower limits of integration.