Mister Exam

Integral of 15xarctgxdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  15*x*atan(x) dx
 |                 
/                  
0                  
0115xatan(x)dx\int\limits_{0}^{1} 15 x \operatorname{atan}{\left(x \right)}\, dx
Integral((15*x)*atan(x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=atan(x)u{\left(x \right)} = \operatorname{atan}{\left(x \right)} and let dv(x)=15x\operatorname{dv}{\left(x \right)} = 15 x.

    Then du(x)=1x2+1\operatorname{du}{\left(x \right)} = \frac{1}{x^{2} + 1}.

    To find v(x)v{\left(x \right)}:

    1. The integral of a constant times a function is the constant times the integral of the function:

      15xdx=15xdx\int 15 x\, dx = 15 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 15x22\frac{15 x^{2}}{2}

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    15x22(x2+1)dx=15x2x2+1dx2\int \frac{15 x^{2}}{2 \left(x^{2} + 1\right)}\, dx = \frac{15 \int \frac{x^{2}}{x^{2} + 1}\, dx}{2}

    1. Rewrite the integrand:

      x2x2+1=11x2+1\frac{x^{2}}{x^{2} + 1} = 1 - \frac{1}{x^{2} + 1}

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

        1dx=x\int 1\, dx = x

      1. The integral of a constant times a function is the constant times the integral of the function:

        (1x2+1)dx=1x2+1dx\int \left(- \frac{1}{x^{2} + 1}\right)\, dx = - \int \frac{1}{x^{2} + 1}\, dx

          PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), True), (ArccothRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False), (ArctanhRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False)], context=1/(x**2 + 1), symbol=x)

        So, the result is: atan(x)- \operatorname{atan}{\left(x \right)}

      The result is: xatan(x)x - \operatorname{atan}{\left(x \right)}

    So, the result is: 15x215atan(x)2\frac{15 x}{2} - \frac{15 \operatorname{atan}{\left(x \right)}}{2}

  3. Add the constant of integration:

    15x2atan(x)215x2+15atan(x)2+constant\frac{15 x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{15 x}{2} + \frac{15 \operatorname{atan}{\left(x \right)}}{2}+ \mathrm{constant}


The answer is:

15x2atan(x)215x2+15atan(x)2+constant\frac{15 x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{15 x}{2} + \frac{15 \operatorname{atan}{\left(x \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                              2        
 |                       15*x   15*atan(x)   15*x *atan(x)
 | 15*x*atan(x) dx = C - ---- + ---------- + -------------
 |                        2         2              2      
/                                                         
15xatan(x)dx=C+15x2atan(x)215x2+15atan(x)2\int 15 x \operatorname{atan}{\left(x \right)}\, dx = C + \frac{15 x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{15 x}{2} + \frac{15 \operatorname{atan}{\left(x \right)}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90020
The answer [src]
  15   15*pi
- -- + -----
  2      4  
152+15π4- \frac{15}{2} + \frac{15 \pi}{4}
=
=
  15   15*pi
- -- + -----
  2      4  
152+15π4- \frac{15}{2} + \frac{15 \pi}{4}
-15/2 + 15*pi/4
Numerical answer [src]
4.28097245096173
4.28097245096173

    Use the examples entering the upper and lower limits of integration.