Integral of x*arccos(x^2) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=x2.
Then let du=2xdx and substitute 2du:
∫2acos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫acos(u)du=2∫acos(u)du
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=acos(u) and let dv(u)=1.
Then du(u)=−1−u21.
To find v(u):
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−1−u2u)du=−∫1−u2udu
-
Let u=1−u2.
Then let du=−2udu and substitute −2du:
∫(−2u1)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=−2∫u1du
-
The integral of un is n+1un+1 when n=−1:
∫u1du=2u
So, the result is: −u
Now substitute u back in:
−1−u2
So, the result is: 1−u2
So, the result is: 2uacos(u)−21−u2
Now substitute u back in:
2x2acos(x2)−21−x4
Method #2
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=acos(x2) and let dv(x)=x.
Then du(x)=−1−x42x.
To find v(x):
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−1−x4x3)dx=−∫1−x4x3dx
-
Let u=1−x4.
Then let du=−4x3dx and substitute −4du:
∫(−4u1)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=−4∫u1du
-
The integral of un is n+1un+1 when n=−1:
∫u1du=2u
So, the result is: −2u
Now substitute u back in:
−21−x4
So, the result is: 21−x4
-
Add the constant of integration:
2x2acos(x2)−21−x4+constant
The answer is:
2x2acos(x2)−21−x4+constant
The answer (Indefinite)
[src]
/ ________
| / 4 2 / 2\
| / 2\ \/ 1 - x x *acos\x /
| x*acos\x / dx = C - ----------- + -----------
| 2 2
/
∫xacos(x2)dx=C+2x2acos(x2)−21−x4
The graph
___
9*acos(9/16) 5*\/ 7
- ------------ + -------
32 32
−329acos(169)+3257
=
___
9*acos(9/16) 5*\/ 7
- ------------ + -------
32 32
−329acos(169)+3257
-9*acos(9/16)/32 + 5*sqrt(7)/32
Use the examples entering the upper and lower limits of integration.