Mister Exam

Other calculators


x*arccos(x)

Integral of x*arccos(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  x*acos(x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} x \operatorname{acos}{\left(x \right)}\, dx$$
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of is when :

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

      SqrtQuadraticDenomRule(a=1, b=0, c=-1, coeffs=[1, 0, 0], context=x**2/sqrt(1 - x**2), symbol=x)

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                                                  ________
  /                              2               /      2 
 |                    asin(x)   x *acos(x)   x*\/  1 - x  
 | x*acos(x) dx = C + ------- + ---------- - -------------
 |                       4          2              4      
/                                                         
$${{{{\arcsin x}\over{2}}-{{x\,\sqrt{1-x^2}}\over{2}}}\over{2}}+{{x^2 \,\arccos x}\over{2}}$$
The graph
The answer [src]
pi
--
8 
$${{\pi}\over{8}}$$
=
=
pi
--
8 
$$\frac{\pi}{8}$$
Numerical answer [src]
0.392699081698724
0.392699081698724
The graph
Integral of x*arccos(x) dx

    Use the examples entering the upper and lower limits of integration.