Mister Exam

Integral of xe^(6x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     6*x   
 |  x*e    dx
 |           
/            
0            
01xe6xdx\int\limits_{0}^{1} x e^{6 x}\, dx
Integral(x*E^(6*x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=xu{\left(x \right)} = x and let dv(x)=e6x\operatorname{dv}{\left(x \right)} = e^{6 x}.

    Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

    To find v(x)v{\left(x \right)}:

    1. There are multiple ways to do this integral.

      Method #1

      1. Let u=6xu = 6 x.

        Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

        eu36du\int \frac{e^{u}}{36}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          eu6du=eudu6\int \frac{e^{u}}{6}\, du = \frac{\int e^{u}\, du}{6}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu6\frac{e^{u}}{6}

        Now substitute uu back in:

        e6x6\frac{e^{6 x}}{6}

      Method #2

      1. Let u=e6xu = e^{6 x}.

        Then let du=6e6xdxdu = 6 e^{6 x} dx and substitute du6\frac{du}{6}:

        136du\int \frac{1}{36}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          16du=1du6\int \frac{1}{6}\, du = \frac{\int 1\, du}{6}

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          So, the result is: u6\frac{u}{6}

        Now substitute uu back in:

        e6x6\frac{e^{6 x}}{6}

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    e6x6dx=e6xdx6\int \frac{e^{6 x}}{6}\, dx = \frac{\int e^{6 x}\, dx}{6}

    1. Let u=6xu = 6 x.

      Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

      eu36du\int \frac{e^{u}}{36}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        eu6du=eudu6\int \frac{e^{u}}{6}\, du = \frac{\int e^{u}\, du}{6}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu6\frac{e^{u}}{6}

      Now substitute uu back in:

      e6x6\frac{e^{6 x}}{6}

    So, the result is: e6x36\frac{e^{6 x}}{36}

  3. Now simplify:

    (6x1)e6x36\frac{\left(6 x - 1\right) e^{6 x}}{36}

  4. Add the constant of integration:

    (6x1)e6x36+constant\frac{\left(6 x - 1\right) e^{6 x}}{36}+ \mathrm{constant}


The answer is:

(6x1)e6x36+constant\frac{\left(6 x - 1\right) e^{6 x}}{36}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                  6*x      6*x
 |    6*x          e      x*e   
 | x*e    dx = C - ---- + ------
 |                  36      6   
/                               
(6x1)e6x36{{\left(6\,x-1\right)\,e^{6\,x}}\over{36}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-500500
The answer [src]
        6
1    5*e 
-- + ----
36    36 
5e636+136{{5\,e^6}\over{36}}+{{1}\over{36}}
=
=
        6
1    5*e 
-- + ----
36    36 
136+5e636\frac{1}{36} + \frac{5 e^{6}}{36}
Numerical answer [src]
56.0595546517688
56.0595546517688
The graph
Integral of xe^(6x) dx

    Use the examples entering the upper and lower limits of integration.