1 / | | x - 2 | ---------- dx | 2 | x - x + 1 | / 0
Integral((x - 2)/(x^2 - x + 1), (x, 0, 1))
/ | | x - 2 | ---------- dx | 2 | x - x + 1 | /
/ 2*x - 1 \
|----------| / -3 \
| 2 | |-----|
x - 2 \x - x + 1/ \2*3/4/
---------- = ------------ + -------------------------
2 2 2
x - x + 1 / ___ ___\
|-2*\/ 3 \/ 3 |
|--------*x + -----| + 1
\ 3 3 / / | | x - 2 | ---------- dx | 2 = | x - x + 1 | /
/
|
| 2*x - 1
| ---------- dx
| 2
| x - x + 1 /
| |
/ | 1
---------------- - 2* | ------------------------- dx
2 | 2
| / ___ ___\
| |-2*\/ 3 \/ 3 |
| |--------*x + -----| + 1
| \ 3 3 /
|
/ /
|
| 2*x - 1
| ---------- dx
| 2
| x - x + 1
|
/
----------------
2 2 u = x - x
/
|
| 1
| ----- du
| 1 + u
|
/ log(1 + u)
----------- = ----------
2 2 /
|
| 2*x - 1
| ---------- dx
| 2
| x - x + 1
| / 2 \
/ log\1 + x - x/
---------------- = ---------------
2 2 /
|
| 1
-2* | ------------------------- dx
| 2
| / ___ ___\
| |-2*\/ 3 \/ 3 |
| |--------*x + -----| + 1
| \ 3 3 /
|
/ ___ ___
\/ 3 2*x*\/ 3
v = ----- - ---------
3 3 /
|
| 1
-2* | ------ dv = -2*atan(v)
| 2
| 1 + v
|
/ /
| / ___ ___\
| 1 ___ | \/ 3 2*x*\/ 3 |
-2* | ------------------------- dx = -\/ 3 *atan|- ----- + ---------|
| 2 \ 3 3 /
| / ___ ___\
| |-2*\/ 3 \/ 3 |
| |--------*x + -----| + 1
| \ 3 3 /
|
/ / 2 \ / ___ ___\
log\1 + x - x/ ___ | \/ 3 2*x*\/ 3 |
C + --------------- - \/ 3 *atan|- ----- + ---------|
2 \ 3 3 // | / 2 \ / ___ \ | x - 2 log\1 + x - x/ ___ |2*\/ 3 *(-1/2 + x)| | ---------- dx = C + --------------- - \/ 3 *atan|------------------| | 2 2 \ 3 / | x - x + 1 | /
___
-pi*\/ 3
----------
3
=
___
-pi*\/ 3
----------
3
-pi*sqrt(3)/3
Use the examples entering the upper and lower limits of integration.