Mister Exam

Other calculators


ln(4x^2+1)

Integral of ln(4x^2+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |     /   2    \   
 |  log\4*x  + 1/ dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \log{\left(4 x^{2} + 1 \right)}\, dx$$
Integral(log(4*x^2 + 1), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of a constant is the constant times the variable of integration:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of a constant times a function is the constant times the integral of the function:

          PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=4, c=1, context=1/(4*x**2 + 1), symbol=x), True), (ArccothRule(a=1, b=4, c=1, context=1/(4*x**2 + 1), symbol=x), False), (ArctanhRule(a=1, b=4, c=1, context=1/(4*x**2 + 1), symbol=x), False)], context=1/(4*x**2 + 1), symbol=x)

        So, the result is:

      The result is:

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                        
 |                                                         
 |    /   2    \                     /   2    \            
 | log\4*x  + 1/ dx = C - 2*x + x*log\4*x  + 1/ + atan(2*x)
 |                                                         
/                                                          
$$\int \log{\left(4 x^{2} + 1 \right)}\, dx = C + x \log{\left(4 x^{2} + 1 \right)} - 2 x + \operatorname{atan}{\left(2 x \right)}$$
The graph
The answer [src]
-2 + atan(2) + log(5)
$$-2 + \operatorname{atan}{\left(2 \right)} + \log{\left(5 \right)}$$
=
=
-2 + atan(2) + log(5)
$$-2 + \operatorname{atan}{\left(2 \right)} + \log{\left(5 \right)}$$
-2 + atan(2) + log(5)
Numerical answer [src]
0.716586630228191
0.716586630228191
The graph
Integral of ln(4x^2+1) dx

    Use the examples entering the upper and lower limits of integration.