Mister Exam

Other calculators


(x-2)/sqrt(x^2-9)

You entered:

(x-2)/sqrt(x^2-9)

What you mean?

Integral of (x-2)/sqrt(x^2-9) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     x - 2      
 |  ----------- dx
 |     ________   
 |    /  2        
 |  \/  x  - 9    
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{x - 2}{\sqrt{x^{2} - 9}}\, dx$$
Integral((x - 1*2)/(sqrt(x^2 - 1*9)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                               
 |                         _________        /           _________\
 |    x - 2               /       2         |          /       2 |
 | ----------- dx = C + \/  -9 + x   - 2*log\2*x + 2*\/  -9 + x  /
 |    ________                                                    
 |   /  2                                                         
 | \/  x  - 9                                                     
 |                                                                
/                                                                 
$$\int \frac{x - 2}{\sqrt{x^{2} - 9}}\, dx = C + \sqrt{x^{2} - 9} - 2 \log{\left(2 x + 2 \sqrt{x^{2} - 9} \right)}$$
The graph
The answer [src]
            /          ___\                           ___
-3*I - 2*log\1 + 2*I*\/ 2 / + 2*log(3) + pi*I + 2*I*\/ 2 
$$2 \log{\left(3 \right)} - 3 i - 2 \log{\left(1 + 2 \sqrt{2} i \right)} + 2 \sqrt{2} i + i \pi$$
=
=
            /          ___\                           ___
-3*I - 2*log\1 + 2*I*\/ 2 / + 2*log(3) + pi*I + 2*I*\/ 2 
$$2 \log{\left(3 \right)} - 3 i - 2 \log{\left(1 + 2 \sqrt{2} i \right)} + 2 \sqrt{2} i + i \pi$$
Numerical answer [src]
(0.0 + 0.508100943654434j)
(0.0 + 0.508100943654434j)
The graph
Integral of (x-2)/sqrt(x^2-9) dx

    Use the examples entering the upper and lower limits of integration.