(x-2)/sqrt(x^2-9)
1 / | | x - 2 | ----------- dx | ________ | / 2 | \/ x - 9 | / 0
Integral((x - 1*2)/(sqrt(x^2 - 1*9)), (x, 0, 1))
/ | _________ / _________\ | x - 2 / 2 | / 2 | | ----------- dx = C + \/ -9 + x - 2*log\2*x + 2*\/ -9 + x / | ________ | / 2 | \/ x - 9 | /
/ ___\ ___ -3*I - 2*log\1 + 2*I*\/ 2 / + 2*log(3) + pi*I + 2*I*\/ 2
=
/ ___\ ___ -3*I - 2*log\1 + 2*I*\/ 2 / + 2*log(3) + pi*I + 2*I*\/ 2
Use the examples entering the upper and lower limits of integration.