1 / | | x | ----------- dx | _________ | \/ 2*x - 5 | / 0
Integral(x/sqrt(2*x - 5), (x, 0, 1))
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | 3/2 _________ | x (2*x - 5) 5*\/ 2*x - 5 | ----------- dx = C + ------------ + ------------- | _________ 6 2 | \/ 2*x - 5 | /
___
___ 5*I*\/ 5
2*I*\/ 3 - ---------
3
=
___
___ 5*I*\/ 5
2*I*\/ 3 - ---------
3
2*i*sqrt(3) - 5*i*sqrt(5)/3
Use the examples entering the upper and lower limits of integration.