Mister Exam

Other calculators


(x-3)e^-x

Integral of (x-3)e^-x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3               
  /               
 |                
 |           -x   
 |  (x - 3)*E   dx
 |                
/                 
0                 
03ex(x3)dx\int\limits_{0}^{3} e^{- x} \left(x - 3\right)\, dx
Integral((x - 3)*E^(-x), (x, 0, 3))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=xu = - x.

      Then let du=dxdu = - dx and substitute dudu:

      (ueu+3eu)du\int \left(u e^{u} + 3 e^{u}\right)\, du

      1. Integrate term-by-term:

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=uu{\left(u \right)} = u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

          Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

          To find v(u)v{\left(u \right)}:

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          Now evaluate the sub-integral.

        2. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        1. The integral of a constant times a function is the constant times the integral of the function:

          3eudu=3eudu\int 3 e^{u}\, du = 3 \int e^{u}\, du

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: 3eu3 e^{u}

        The result is: ueu+2euu e^{u} + 2 e^{u}

      Now substitute uu back in:

      xex+2ex- x e^{- x} + 2 e^{- x}

    Method #2

    1. Rewrite the integrand:

      ex(x3)=xex3exe^{- x} \left(x - 3\right) = x e^{- x} - 3 e^{- x}

    2. Integrate term-by-term:

      1. Let u=xu = - x.

        Then let du=dxdu = - dx and substitute dudu:

        ueudu\int u e^{u}\, du

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=uu{\left(u \right)} = u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

          Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

          To find v(u)v{\left(u \right)}:

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          Now evaluate the sub-integral.

        2. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        Now substitute uu back in:

        xexex- x e^{- x} - e^{- x}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3ex)dx=3exdx\int \left(- 3 e^{- x}\right)\, dx = - 3 \int e^{- x}\, dx

        1. Let u=xu = - x.

          Then let du=dxdu = - dx and substitute du- du:

          (eu)du\int \left(- e^{u}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            False\text{False}

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: eu- e^{u}

          Now substitute uu back in:

          ex- e^{- x}

        So, the result is: 3ex3 e^{- x}

      The result is: xex+2ex- x e^{- x} + 2 e^{- x}

  2. Now simplify:

    (2x)ex\left(2 - x\right) e^{- x}

  3. Add the constant of integration:

    (2x)ex+constant\left(2 - x\right) e^{- x}+ \mathrm{constant}


The answer is:

(2x)ex+constant\left(2 - x\right) e^{- x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                                   
 |          -x             -x      -x
 | (x - 3)*E   dx = C + 2*e   - x*e  
 |                                   
/                                    
ex(x3)dx=Cxex+2ex\int e^{- x} \left(x - 3\right)\, dx = C - x e^{- x} + 2 e^{- x}
The graph
0.003.000.250.500.751.001.251.501.752.002.252.502.755-5
The answer [src]
      -3
-2 - e  
2e3-2 - e^{-3}
=
=
      -3
-2 - e  
2e3-2 - e^{-3}
-2 - exp(-3)
Numerical answer [src]
-2.04978706836786
-2.04978706836786
The graph
Integral of (x-3)e^-x dx

    Use the examples entering the upper and lower limits of integration.