Mister Exam

Other calculators


1/(x^(1/2)+1)

Integral of 1/(x^(1/2)+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |      1       
 |  --------- dx
 |    ___       
 |  \/ x  + 1   
 |              
/               
0               
011x+1dx\int\limits_{0}^{1} \frac{1}{\sqrt{x} + 1}\, dx
Integral(1/(sqrt(x) + 1), (x, 0, 1))
Detail solution
  1. Let u=xu = \sqrt{x}.

    Then let du=dx2xdu = \frac{dx}{2 \sqrt{x}} and substitute 2du2 du:

    2uu+1du\int \frac{2 u}{u + 1}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      uu+1du=2uu+1du\int \frac{u}{u + 1}\, du = 2 \int \frac{u}{u + 1}\, du

      1. Rewrite the integrand:

        uu+1=11u+1\frac{u}{u + 1} = 1 - \frac{1}{u + 1}

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          1du=u\int 1\, du = u

        1. The integral of a constant times a function is the constant times the integral of the function:

          (1u+1)du=1u+1du\int \left(- \frac{1}{u + 1}\right)\, du = - \int \frac{1}{u + 1}\, du

          1. Let u=u+1u = u + 1.

            Then let du=dudu = du and substitute dudu:

            1udu\int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            Now substitute uu back in:

            log(u+1)\log{\left(u + 1 \right)}

          So, the result is: log(u+1)- \log{\left(u + 1 \right)}

        The result is: ulog(u+1)u - \log{\left(u + 1 \right)}

      So, the result is: 2u2log(u+1)2 u - 2 \log{\left(u + 1 \right)}

    Now substitute uu back in:

    2x2log(x+1)2 \sqrt{x} - 2 \log{\left(\sqrt{x} + 1 \right)}

  2. Add the constant of integration:

    2x2log(x+1)+constant2 \sqrt{x} - 2 \log{\left(\sqrt{x} + 1 \right)}+ \mathrm{constant}


The answer is:

2x2log(x+1)+constant2 \sqrt{x} - 2 \log{\left(\sqrt{x} + 1 \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                             
 |                                              
 |     1                   /      ___\       ___
 | --------- dx = C - 2*log\1 + \/ x / + 2*\/ x 
 |   ___                                        
 | \/ x  + 1                                    
 |                                              
/                                               
1x+1dx=C+2x2log(x+1)\int \frac{1}{\sqrt{x} + 1}\, dx = C + 2 \sqrt{x} - 2 \log{\left(\sqrt{x} + 1 \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
2 - 2*log(2)
22log(2)2 - 2 \log{\left(2 \right)}
=
=
2 - 2*log(2)
22log(2)2 - 2 \log{\left(2 \right)}
2 - 2*log(2)
Numerical answer [src]
0.613705638880109
0.613705638880109
The graph
Integral of 1/(x^(1/2)+1) dx

    Use the examples entering the upper and lower limits of integration.