Mister Exam

Integral of (x-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |  (x - 1) dx
 |            
/             
0             
01(x1)dx\int\limits_{0}^{1} \left(x - 1\right)\, dx
Integral(x - 1, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    1. The integral of a constant is the constant times the variable of integration:

      (1)dx=x\int \left(-1\right)\, dx = - x

    The result is: x22x\frac{x^{2}}{2} - x

  2. Now simplify:

    x(x2)2\frac{x \left(x - 2\right)}{2}

  3. Add the constant of integration:

    x(x2)2+constant\frac{x \left(x - 2\right)}{2}+ \mathrm{constant}


The answer is:

x(x2)2+constant\frac{x \left(x - 2\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                  2    
 |                  x     
 | (x - 1) dx = C + -- - x
 |                  2     
/                         
(x1)dx=C+x22x\int \left(x - 1\right)\, dx = C + \frac{x^{2}}{2} - x
The graph
0.001.000.100.200.300.400.500.600.700.800.901-2
The answer [src]
-1/2
12- \frac{1}{2}
=
=
-1/2
12- \frac{1}{2}
-1/2
Numerical answer [src]
-0.5
-0.5
The graph
Integral of (x-1) dx

    Use the examples entering the upper and lower limits of integration.