Mister Exam

Other calculators


1/(thx-1)

Integral of 1/(thx-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                 
  /                 
 |                  
 |         1        
 |  1*----------- dx
 |    tanh(x) - 1   
 |                  
/                   
0                   
$$\int\limits_{0}^{0} 1 \cdot \frac{1}{\tanh{\left(x \right)} - 1}\, dx$$
Integral(1/(tanh(x) - 1*1), (x, 0, 0))
The answer (Indefinite) [src]
  /                                                                       
 |                                                                        
 |        1                     1                x            x*tanh(x)   
 | 1*----------- dx = C + -------------- + -------------- - --------------
 |   tanh(x) - 1          -2 + 2*tanh(x)   -2 + 2*tanh(x)   -2 + 2*tanh(x)
 |                                                                        
/                                                                         
$$\int 1 \cdot \frac{1}{\tanh{\left(x \right)} - 1}\, dx = C - \frac{x \tanh{\left(x \right)}}{2 \tanh{\left(x \right)} - 2} + \frac{x}{2 \tanh{\left(x \right)} - 2} + \frac{1}{2 \tanh{\left(x \right)} - 2}$$
The graph
The answer [src]
0
$$0$$
=
=
0
$$0$$
Numerical answer [src]
0.0
0.0
The graph
Integral of 1/(thx-1) dx

    Use the examples entering the upper and lower limits of integration.