Mister Exam

Other calculators

Integral of 1/(sqrt(x)-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |        1       
 |  1*--------- dx
 |      ___       
 |    \/ x  - 1   
 |                
/                 
0                 
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{\sqrt{x} - 1}\, dx$$
Integral(1/(sqrt(x) - 1*1), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                
 |                                                 
 |       1                  ___        /       ___\
 | 1*--------- dx = C + 2*\/ x  + 2*log\-1 + \/ x /
 |     ___                                         
 |   \/ x  - 1                                     
 |                                                 
/                                                  
$$2\,\left(\sqrt{x}-1\right)+2\,\log \left(\sqrt{x}-1\right)$$
The answer [src]
-oo - 2*pi*I
$$\int_{0}^{1}{{{1}\over{\sqrt{x}-1}}\;dx}$$
=
=
-oo - 2*pi*I
$$-\infty - 2 i \pi$$
Numerical answer [src]
-87.568067410168
-87.568067410168

    Use the examples entering the upper and lower limits of integration.