Mister Exam

Other calculators

Integral of xlogx^-1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |    x      
 |  ------ dx
 |  log(x)   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{x}{\log{\left(x \right)}}\, dx$$
Integral(x/log(x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

      EiRule(a=2, b=0, context=exp(2*_u)/_u, symbol=_u)

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            
 |                             
 |   x                         
 | ------ dx = C + Ei(2*log(x))
 | log(x)                      
 |                             
/                              
$$\int \frac{x}{\log{\left(x \right)}}\, dx = C + \operatorname{Ei}{\left(2 \log{\left(x \right)} \right)}$$
The answer [src]
-oo
$$-\infty$$
=
=
-oo
$$-\infty$$
-oo
Numerical answer [src]
-42.820593940758
-42.820593940758

    Use the examples entering the upper and lower limits of integration.