Mister Exam

Other calculators


x/x√1-ln^2x

Integral of x/x√1-ln^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ___                      
 \/ 2                       
   /                        
  |                         
  |   /    ___          \   
  |   |x*\/ 1       2   |   
  |   |------- - log (x)| dx
  |   \   x             /   
  |                         
 /                          
 1                          
$$\int\limits_{1}^{\sqrt{2}} \left(- \log{\left(x \right)}^{2} + \frac{\sqrt{1} x}{x}\right)\, dx$$
Integral(x*sqrt(1)/x - log(x)^2, (x, 1, sqrt(2)))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of the exponential function is itself.

          Now evaluate the sub-integral.

        2. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of the exponential function is itself.

          Now evaluate the sub-integral.

        3. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                       
 |                                                        
 | /    ___          \                                    
 | |x*\/ 1       2   |                   2                
 | |------- - log (x)| dx = C - x - x*log (x) + 2*x*log(x)
 | \   x             /                                    
 |                                                        
/                                                         
$$x-x\,\left(\left(\log x\right)^2-2\,\log x+2\right)$$
The graph
The answer [src]
      ___     ___    2/  ___\       ___    /  ___\
1 - \/ 2  - \/ 2 *log \\/ 2 / + 2*\/ 2 *log\\/ 2 /
$$-{{\left(\log 2\right)^2-4\,\log 2-2^{{{3}\over{2}}}+4}\over{2^{{{3 }\over{2}}}}}$$
=
=
      ___     ___    2/  ___\       ___    /  ___\
1 - \/ 2  - \/ 2 *log \\/ 2 / + 2*\/ 2 *log\\/ 2 /
$$- \sqrt{2} - \sqrt{2} \log{\left(\sqrt{2} \right)}^{2} + 2 \sqrt{2} \log{\left(\sqrt{2} \right)} + 1$$
Numerical answer [src]
0.396178789003915
0.396178789003915
The graph
Integral of x/x√1-ln^2x dx

    Use the examples entering the upper and lower limits of integration.