Mister Exam

Other calculators


x/(2x+1)^1/2

Integral of x/(2x+1)^1/2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       x        
 |  ----------- dx
 |    _________   
 |  \/ 2*x + 1    
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{x}{\sqrt{2 x + 1}}\, dx$$
Integral(x/sqrt(2*x + 1), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                               
 |                        _________            3/2
 |      x               \/ 2*x + 1    (2*x + 1)   
 | ----------- dx = C - ----------- + ------------
 |   _________               2             6      
 | \/ 2*x + 1                                     
 |                                                
/                                                 
$$\int \frac{x}{\sqrt{2 x + 1}}\, dx = C + \frac{\left(2 x + 1\right)^{\frac{3}{2}}}{6} - \frac{\sqrt{2 x + 1}}{2}$$
The graph
The answer [src]
1/3
$$\frac{1}{3}$$
=
=
1/3
$$\frac{1}{3}$$
1/3
Numerical answer [src]
0.333333333333333
0.333333333333333
The graph
Integral of x/(2x+1)^1/2 dx

    Use the examples entering the upper and lower limits of integration.