Integral of ln|x| dx
The solution
The answer (Indefinite)
[src]
/ /
| |
| d | d
/ | --(im(x))*im(x)*sign(x) | --(re(x))*re(x)*sign(x)
| | dx | dx
| log(|x|) dx = C - | ----------------------- dx - | ----------------------- dx + x*log(|x|)
| | |x| | |x|
/ | |
/ /
$$\int \log{\left(\left|{x}\right| \right)}\, dx = C + x \log{\left(\left|{x}\right| \right)} - \int \frac{\operatorname{re}{\left(x\right)} \operatorname{sign}{\left(x \right)} \frac{d}{d x} \operatorname{re}{\left(x\right)}}{\left|{x}\right|}\, dx - \int \frac{\operatorname{im}{\left(x\right)} \operatorname{sign}{\left(x \right)} \frac{d}{d x} \operatorname{im}{\left(x\right)}}{\left|{x}\right|}\, dx$$
Use the examples entering the upper and lower limits of integration.