pi -- 2 / | | x | ----------- dx | _________ | \/ 4*x + 5 | / 0
Integral(x/sqrt(4*x + 5), (x, 0, pi/2))
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | _________ 3/2 | x 5*\/ 4*x + 5 (4*x + 5) | ----------- dx = C - ------------- + ------------ | _________ 8 24 | \/ 4*x + 5 | /
__________ ___ __________
5*\/ 5 + 2*pi 5*\/ 5 pi*\/ 5 + 2*pi
- -------------- + ------- + ---------------
12 12 12
=
__________ ___ __________
5*\/ 5 + 2*pi 5*\/ 5 pi*\/ 5 + 2*pi
- -------------- + ------- + ---------------
12 12 12
-5*sqrt(5 + 2*pi)/12 + 5*sqrt(5)/12 + pi*sqrt(5 + 2*pi)/12
Use the examples entering the upper and lower limits of integration.