Mister Exam

Other calculators

Integral of x/(sqrt(4*x+5)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi               
 --               
 2                
  /               
 |                
 |       x        
 |  ----------- dx
 |    _________   
 |  \/ 4*x + 5    
 |                
/                 
0                 
$$\int\limits_{0}^{\frac{\pi}{2}} \frac{x}{\sqrt{4 x + 5}}\, dx$$
Integral(x/sqrt(4*x + 5), (x, 0, pi/2))
Detail solution
  1. Let .

    Then let and substitute :

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                 
 |                          _________            3/2
 |      x               5*\/ 4*x + 5    (4*x + 5)   
 | ----------- dx = C - ------------- + ------------
 |   _________                8              24     
 | \/ 4*x + 5                                       
 |                                                  
/                                                   
$$\int \frac{x}{\sqrt{4 x + 5}}\, dx = C + \frac{\left(4 x + 5\right)^{\frac{3}{2}}}{24} - \frac{5 \sqrt{4 x + 5}}{8}$$
The graph
The answer [src]
      __________       ___        __________
  5*\/ 5 + 2*pi    5*\/ 5    pi*\/ 5 + 2*pi 
- -------------- + ------- + ---------------
        12            12            12      
$$- \frac{5 \sqrt{5 + 2 \pi}}{12} + \frac{\pi \sqrt{5 + 2 \pi}}{12} + \frac{5 \sqrt{5}}{12}$$
=
=
      __________       ___        __________
  5*\/ 5 + 2*pi    5*\/ 5    pi*\/ 5 + 2*pi 
- -------------- + ------- + ---------------
        12            12            12      
$$- \frac{5 \sqrt{5 + 2 \pi}}{12} + \frac{\pi \sqrt{5 + 2 \pi}}{12} + \frac{5 \sqrt{5}}{12}$$
-5*sqrt(5 + 2*pi)/12 + 5*sqrt(5)/12 + pi*sqrt(5 + 2*pi)/12
Numerical answer [src]
0.411488785888517
0.411488785888517

    Use the examples entering the upper and lower limits of integration.