Mister Exam

Other calculators

Integral of x*dx/sqrt(4*x+5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       x        
 |  ----------- dx
 |    _________   
 |  \/ 4*x + 5    
 |                
/                 
0                 
01x4x+5dx\int\limits_{0}^{1} \frac{x}{\sqrt{4 x + 5}}\, dx
Integral(x/sqrt(4*x + 5), (x, 0, 1))
Detail solution
  1. Let u=4x+5u = \sqrt{4 x + 5}.

    Then let du=2dx4x+5du = \frac{2 dx}{\sqrt{4 x + 5}} and substitute dudu:

    (u2858)du\int \left(\frac{u^{2}}{8} - \frac{5}{8}\right)\, du

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        u28du=u2du8\int \frac{u^{2}}{8}\, du = \frac{\int u^{2}\, du}{8}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

        So, the result is: u324\frac{u^{3}}{24}

      1. The integral of a constant is the constant times the variable of integration:

        (58)du=5u8\int \left(- \frac{5}{8}\right)\, du = - \frac{5 u}{8}

      The result is: u3245u8\frac{u^{3}}{24} - \frac{5 u}{8}

    Now substitute uu back in:

    (4x+5)322454x+58\frac{\left(4 x + 5\right)^{\frac{3}{2}}}{24} - \frac{5 \sqrt{4 x + 5}}{8}

  2. Now simplify:

    (2x5)4x+512\frac{\left(2 x - 5\right) \sqrt{4 x + 5}}{12}

  3. Add the constant of integration:

    (2x5)4x+512+constant\frac{\left(2 x - 5\right) \sqrt{4 x + 5}}{12}+ \mathrm{constant}


The answer is:

(2x5)4x+512+constant\frac{\left(2 x - 5\right) \sqrt{4 x + 5}}{12}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                 
 |                          _________            3/2
 |      x               5*\/ 4*x + 5    (4*x + 5)   
 | ----------- dx = C - ------------- + ------------
 |   _________                8              24     
 | \/ 4*x + 5                                       
 |                                                  
/                                                   
x4x+5dx=C+(4x+5)322454x+58\int \frac{x}{\sqrt{4 x + 5}}\, dx = C + \frac{\left(4 x + 5\right)^{\frac{3}{2}}}{24} - \frac{5 \sqrt{4 x + 5}}{8}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-1
The answer [src]
          ___
  3   5*\/ 5 
- - + -------
  4      12  
34+5512- \frac{3}{4} + \frac{5 \sqrt{5}}{12}
=
=
          ___
  3   5*\/ 5 
- - + -------
  4      12  
34+5512- \frac{3}{4} + \frac{5 \sqrt{5}}{12}
-3/4 + 5*sqrt(5)/12
Numerical answer [src]
0.181694990624912
0.181694990624912

    Use the examples entering the upper and lower limits of integration.