Integral of x/(sqrt(2x+1)) dx
The solution
Detail solution
-
Let u=2x+1.
Then let du=2x+1dx and substitute du:
∫(2u2−21)du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u2du=2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 6u3
-
The integral of a constant is the constant times the variable of integration:
∫(−21)du=−2u
The result is: 6u3−2u
Now substitute u back in:
6(2x+1)23−22x+1
-
Now simplify:
3(x−1)2x+1
-
Add the constant of integration:
3(x−1)2x+1+constant
The answer is:
3(x−1)2x+1+constant
The answer (Indefinite)
[src]
/
| _________ 3/2
| x \/ 2*x + 1 (2*x + 1)
| ----------- dx = C - ----------- + ------------
| _________ 2 6
| \/ 2*x + 1
|
/
∫2x+1xdx=C+6(2x+1)23−22x+1
The graph
Use the examples entering the upper and lower limits of integration.