Integral of dx/(sqrt(2)*x+1) dx
The solution
Detail solution
-
Let u=2x+1.
Then let du=2dx and substitute 22du:
∫2u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=22∫u1du
-
The integral of u1 is log(u).
So, the result is: 22log(u)
Now substitute u back in:
22log(2x+1)
-
Now simplify:
22log(2x+1)
-
Add the constant of integration:
22log(2x+1)+constant
The answer is:
22log(2x+1)+constant
The answer (Indefinite)
[src]
/
| ___ / ___ \
| 1 \/ 2 *log\\/ 2 *x + 1/
| ----------- dx = C + ----------------------
| ___ 2
| \/ 2 *x + 1
|
/
∫2x+11dx=C+22log(2x+1)
The graph
___ / ___\
-\/ 2 *log\1 + 4*\/ 2 /
------------------------
2
−22log(1+42)
=
___ / ___\
-\/ 2 *log\1 + 4*\/ 2 /
------------------------
2
−22log(1+42)
-sqrt(2)*log(1 + 4*sqrt(2))/2
Use the examples entering the upper and lower limits of integration.