1 / | | x | ------- dx | 2 | cos (x) | / 0
Integral(x/cos(x)^2, (x, 0, 1))
/ / 2/x\\ / /x\\ / /x\\ 2/x\ / /x\\ 2/x\ / /x\\ 2/x\ / 2/x\\ /x\ | log|1 + tan |-|| log|1 + tan|-|| log|-1 + tan|-|| tan |-|*log|1 + tan|-|| tan |-|*log|-1 + tan|-|| tan |-|*log|1 + tan |-|| 2*x*tan|-| | x \ \2// \ \2// \ \2// \2/ \ \2// \2/ \ \2// \2/ \ \2// \2/ | ------- dx = C + ---------------- - --------------- - ---------------- + ----------------------- + ------------------------ - ------------------------ - ------------ | 2 2/x\ 2/x\ 2/x\ 2/x\ 2/x\ 2/x\ 2/x\ | cos (x) -1 + tan |-| -1 + tan |-| -1 + tan |-| -1 + tan |-| -1 + tan |-| -1 + tan |-| -1 + tan |-| | \2/ \2/ \2/ \2/ \2/ \2/ \2/ /
/ 2 \ 2 2 2 / 2 \
log\1 + tan (1/2)/ pi*I + log(1 - tan(1/2)) log(1 + tan(1/2)) 2*tan(1/2) tan (1/2)*(pi*I + log(1 - tan(1/2))) tan (1/2)*log(1 + tan(1/2)) tan (1/2)*log\1 + tan (1/2)/
------------------ - pi*I - ------------------------ - ----------------- - -------------- + ------------------------------------ + --------------------------- - ----------------------------
2 2 2 2 2 2 2
-1 + tan (1/2) -1 + tan (1/2) -1 + tan (1/2) -1 + tan (1/2) -1 + tan (1/2) -1 + tan (1/2) -1 + tan (1/2)
=
/ 2 \ 2 2 2 / 2 \
log\1 + tan (1/2)/ pi*I + log(1 - tan(1/2)) log(1 + tan(1/2)) 2*tan(1/2) tan (1/2)*(pi*I + log(1 - tan(1/2))) tan (1/2)*log(1 + tan(1/2)) tan (1/2)*log\1 + tan (1/2)/
------------------ - pi*I - ------------------------ - ----------------- - -------------- + ------------------------------------ + --------------------------- - ----------------------------
2 2 2 2 2 2 2
-1 + tan (1/2) -1 + tan (1/2) -1 + tan (1/2) -1 + tan (1/2) -1 + tan (1/2) -1 + tan (1/2) -1 + tan (1/2)
log(1 + tan(1/2)^2)/(-1 + tan(1/2)^2) - pi*i - (pi*i + log(1 - tan(1/2)))/(-1 + tan(1/2)^2) - log(1 + tan(1/2))/(-1 + tan(1/2)^2) - 2*tan(1/2)/(-1 + tan(1/2)^2) + tan(1/2)^2*(pi*i + log(1 - tan(1/2)))/(-1 + tan(1/2)^2) + tan(1/2)^2*log(1 + tan(1/2))/(-1 + tan(1/2)^2) - tan(1/2)^2*log(1 + tan(1/2)^2)/(-1 + tan(1/2)^2)
Use the examples entering the upper and lower limits of integration.