Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of exp(x)/x Integral of exp(x)/x
  • Integral of x*exp(-x^2) Integral of x*exp(-x^2)
  • Integral of x/(x-1)^2
  • Integral of lnx^2
  • Identical expressions

  • (sqrt(one -tanx))/(cos^2x)
  • ( square root of (1 minus tangent of x)) divide by ( co sinus of e of squared x)
  • ( square root of (one minus tangent of x)) divide by ( co sinus of e of squared x)
  • (√(1-tanx))/(cos^2x)
  • (sqrt(1-tanx))/(cos2x)
  • sqrt1-tanx/cos2x
  • (sqrt(1-tanx))/(cos²x)
  • (sqrt(1-tanx))/(cos to the power of 2x)
  • sqrt1-tanx/cos^2x
  • (sqrt(1-tanx)) divide by (cos^2x)
  • (sqrt(1-tanx))/(cos^2x)dx
  • Similar expressions

  • (sqrt(1+tanx))/(cos^2x)

Integral of (sqrt(1-tanx))/(cos^2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                  
  /                  
 |                   
 |    ____________   
 |  \/ 1 - tan(x)    
 |  -------------- dx
 |        2          
 |     cos (x)       
 |                   
/                    
oo                   
$$\int\limits_{\infty}^{\infty} \frac{\sqrt{1 - \tan{\left(x \right)}}}{\cos^{2}{\left(x \right)}}\, dx$$
Integral(sqrt(1 - tan(x))/(cos(x)^2), (x, oo, oo))
The answer (Indefinite) [src]
  /                          /                 
 |                          |                  
 |   ____________           |   ____________   
 | \/ 1 - tan(x)            | \/ 1 - tan(x)    
 | -------------- dx = C +  | -------------- dx
 |       2                  |       2          
 |    cos (x)               |    cos (x)       
 |                          |                  
/                          /                   
$$\int \frac{\sqrt{1 - \tan{\left(x \right)}}}{\cos^{2}{\left(x \right)}}\, dx = C + \int \frac{\sqrt{1 - \tan{\left(x \right)}}}{\cos^{2}{\left(x \right)}}\, dx$$
The answer [src]
0
$$0$$
=
=
0
$$0$$
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.