Integral of x^3sinx dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x3 and let dv(x)=sin(x).
Then du(x)=3x2.
To find v(x):
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=−3x2 and let dv(x)=cos(x).
Then du(x)=−6x.
To find v(x):
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=−6x and let dv(x)=sin(x).
Then du(x)=−6.
To find v(x):
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫6cos(x)dx=6∫cos(x)dx
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
So, the result is: 6sin(x)
-
Add the constant of integration:
−x3cos(x)+3x2sin(x)+6xcos(x)−6sin(x)+constant
The answer is:
−x3cos(x)+3x2sin(x)+6xcos(x)−6sin(x)+constant
The answer (Indefinite)
[src]
/
|
| 3 3 2
| x *sin(x) dx = C - 6*sin(x) - x *cos(x) + 3*x *sin(x) + 6*x*cos(x)
|
/
∫x3sin(x)dx=C−x3cos(x)+3x2sin(x)+6xcos(x)−6sin(x)
The graph
−3sin(1)+5cos(1)
=
−3sin(1)+5cos(1)
Use the examples entering the upper and lower limits of integration.