Mister Exam

Other calculators


x^3sinx

Integral of x^3sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |   3          
 |  x *sin(x) dx
 |              
/               
0               
01x3sin(x)dx\int\limits_{0}^{1} x^{3} \sin{\left(x \right)}\, dx
Integral(x^3*sin(x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=x3u{\left(x \right)} = x^{3} and let dv(x)=sin(x)\operatorname{dv}{\left(x \right)} = \sin{\left(x \right)}.

    Then du(x)=3x2\operatorname{du}{\left(x \right)} = 3 x^{2}.

    To find v(x)v{\left(x \right)}:

    1. The integral of sine is negative cosine:

      sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

    Now evaluate the sub-integral.

  2. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=3x2u{\left(x \right)} = - 3 x^{2} and let dv(x)=cos(x)\operatorname{dv}{\left(x \right)} = \cos{\left(x \right)}.

    Then du(x)=6x\operatorname{du}{\left(x \right)} = - 6 x.

    To find v(x)v{\left(x \right)}:

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    Now evaluate the sub-integral.

  3. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=6xu{\left(x \right)} = - 6 x and let dv(x)=sin(x)\operatorname{dv}{\left(x \right)} = \sin{\left(x \right)}.

    Then du(x)=6\operatorname{du}{\left(x \right)} = -6.

    To find v(x)v{\left(x \right)}:

    1. The integral of sine is negative cosine:

      sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

    Now evaluate the sub-integral.

  4. The integral of a constant times a function is the constant times the integral of the function:

    6cos(x)dx=6cos(x)dx\int 6 \cos{\left(x \right)}\, dx = 6 \int \cos{\left(x \right)}\, dx

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    So, the result is: 6sin(x)6 \sin{\left(x \right)}

  5. Add the constant of integration:

    x3cos(x)+3x2sin(x)+6xcos(x)6sin(x)+constant- x^{3} \cos{\left(x \right)} + 3 x^{2} \sin{\left(x \right)} + 6 x \cos{\left(x \right)} - 6 \sin{\left(x \right)}+ \mathrm{constant}


The answer is:

x3cos(x)+3x2sin(x)+6xcos(x)6sin(x)+constant- x^{3} \cos{\left(x \right)} + 3 x^{2} \sin{\left(x \right)} + 6 x \cos{\left(x \right)} - 6 \sin{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                  
 |                                                                   
 |  3                             3             2                    
 | x *sin(x) dx = C - 6*sin(x) - x *cos(x) + 3*x *sin(x) + 6*x*cos(x)
 |                                                                   
/                                                                    
x3sin(x)dx=Cx3cos(x)+3x2sin(x)+6xcos(x)6sin(x)\int x^{3} \sin{\left(x \right)}\, dx = C - x^{3} \cos{\left(x \right)} + 3 x^{2} \sin{\left(x \right)} + 6 x \cos{\left(x \right)} - 6 \sin{\left(x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.01.0
The answer [src]
-3*sin(1) + 5*cos(1)
3sin(1)+5cos(1)- 3 \sin{\left(1 \right)} + 5 \cos{\left(1 \right)}
=
=
-3*sin(1) + 5*cos(1)
3sin(1)+5cos(1)- 3 \sin{\left(1 \right)} + 5 \cos{\left(1 \right)}
-3*sin(1) + 5*cos(1)
Numerical answer [src]
0.177098574917009
0.177098574917009
The graph
Integral of x^3sinx dx

    Use the examples entering the upper and lower limits of integration.