Mister Exam

Other calculators


4x^3*sin(x)

Integral of 4x^3*sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2               
  /               
 |                
 |     3          
 |  4*x *sin(x) dx
 |                
/                 
1                 
$$\int\limits_{1}^{2} 4 x^{3} \sin{\left(x \right)}\, dx$$
Integral((4*x^3)*sin(x), (x, 1, 2))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of sine is negative cosine:

    Now evaluate the sub-integral.

  2. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of cosine is sine:

    Now evaluate the sub-integral.

  3. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of sine is negative cosine:

    Now evaluate the sub-integral.

  4. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of cosine is sine:

    So, the result is:

  5. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                         
 |                                                                          
 |    3                                3              2                     
 | 4*x *sin(x) dx = C - 24*sin(x) - 4*x *cos(x) + 12*x *sin(x) + 24*x*cos(x)
 |                                                                          
/                                                                           
$$\int 4 x^{3} \sin{\left(x \right)}\, dx = C - 4 x^{3} \cos{\left(x \right)} + 12 x^{2} \sin{\left(x \right)} + 24 x \cos{\left(x \right)} - 24 \sin{\left(x \right)}$$
The graph
The answer [src]
-20*cos(1) + 12*sin(1) + 16*cos(2) + 24*sin(2)
$$- 20 \cos{\left(1 \right)} + 16 \cos{\left(2 \right)} + 12 \sin{\left(1 \right)} + 24 \sin{\left(2 \right)}$$
=
=
-20*cos(1) + 12*sin(1) + 16*cos(2) + 24*sin(2)
$$- 20 \cos{\left(1 \right)} + 16 \cos{\left(2 \right)} + 12 \sin{\left(1 \right)} + 24 \sin{\left(2 \right)}$$
-20*cos(1) + 12*sin(1) + 16*cos(2) + 24*sin(2)
Numerical answer [src]
14.456394559394
14.456394559394
The graph
Integral of 4x^3*sin(x) dx

    Use the examples entering the upper and lower limits of integration.