Mister Exam

Other calculators


4x^3*sin(x)

Integral of 4x^3*sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2               
  /               
 |                
 |     3          
 |  4*x *sin(x) dx
 |                
/                 
1                 
124x3sin(x)dx\int\limits_{1}^{2} 4 x^{3} \sin{\left(x \right)}\, dx
Integral((4*x^3)*sin(x), (x, 1, 2))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=4x3u{\left(x \right)} = 4 x^{3} and let dv(x)=sin(x)\operatorname{dv}{\left(x \right)} = \sin{\left(x \right)}.

    Then du(x)=12x2\operatorname{du}{\left(x \right)} = 12 x^{2}.

    To find v(x)v{\left(x \right)}:

    1. The integral of sine is negative cosine:

      sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

    Now evaluate the sub-integral.

  2. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=12x2u{\left(x \right)} = - 12 x^{2} and let dv(x)=cos(x)\operatorname{dv}{\left(x \right)} = \cos{\left(x \right)}.

    Then du(x)=24x\operatorname{du}{\left(x \right)} = - 24 x.

    To find v(x)v{\left(x \right)}:

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    Now evaluate the sub-integral.

  3. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=24xu{\left(x \right)} = - 24 x and let dv(x)=sin(x)\operatorname{dv}{\left(x \right)} = \sin{\left(x \right)}.

    Then du(x)=24\operatorname{du}{\left(x \right)} = -24.

    To find v(x)v{\left(x \right)}:

    1. The integral of sine is negative cosine:

      sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

    Now evaluate the sub-integral.

  4. The integral of a constant times a function is the constant times the integral of the function:

    24cos(x)dx=24cos(x)dx\int 24 \cos{\left(x \right)}\, dx = 24 \int \cos{\left(x \right)}\, dx

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    So, the result is: 24sin(x)24 \sin{\left(x \right)}

  5. Add the constant of integration:

    4x3cos(x)+12x2sin(x)+24xcos(x)24sin(x)+constant- 4 x^{3} \cos{\left(x \right)} + 12 x^{2} \sin{\left(x \right)} + 24 x \cos{\left(x \right)} - 24 \sin{\left(x \right)}+ \mathrm{constant}


The answer is:

4x3cos(x)+12x2sin(x)+24xcos(x)24sin(x)+constant- 4 x^{3} \cos{\left(x \right)} + 12 x^{2} \sin{\left(x \right)} + 24 x \cos{\left(x \right)} - 24 \sin{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                         
 |                                                                          
 |    3                                3              2                     
 | 4*x *sin(x) dx = C - 24*sin(x) - 4*x *cos(x) + 12*x *sin(x) + 24*x*cos(x)
 |                                                                          
/                                                                           
4x3sin(x)dx=C4x3cos(x)+12x2sin(x)+24xcos(x)24sin(x)\int 4 x^{3} \sin{\left(x \right)}\, dx = C - 4 x^{3} \cos{\left(x \right)} + 12 x^{2} \sin{\left(x \right)} + 24 x \cos{\left(x \right)} - 24 \sin{\left(x \right)}
The graph
1.002.001.101.201.301.401.501.601.701.801.90050
The answer [src]
-20*cos(1) + 12*sin(1) + 16*cos(2) + 24*sin(2)
20cos(1)+16cos(2)+12sin(1)+24sin(2)- 20 \cos{\left(1 \right)} + 16 \cos{\left(2 \right)} + 12 \sin{\left(1 \right)} + 24 \sin{\left(2 \right)}
=
=
-20*cos(1) + 12*sin(1) + 16*cos(2) + 24*sin(2)
20cos(1)+16cos(2)+12sin(1)+24sin(2)- 20 \cos{\left(1 \right)} + 16 \cos{\left(2 \right)} + 12 \sin{\left(1 \right)} + 24 \sin{\left(2 \right)}
-20*cos(1) + 12*sin(1) + 16*cos(2) + 24*sin(2)
Numerical answer [src]
14.456394559394
14.456394559394
The graph
Integral of 4x^3*sin(x) dx

    Use the examples entering the upper and lower limits of integration.