Integral of 4x^3*sin(x) dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=4x3 and let dv(x)=sin(x).
Then du(x)=12x2.
To find v(x):
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=−12x2 and let dv(x)=cos(x).
Then du(x)=−24x.
To find v(x):
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=−24x and let dv(x)=sin(x).
Then du(x)=−24.
To find v(x):
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫24cos(x)dx=24∫cos(x)dx
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
So, the result is: 24sin(x)
-
Add the constant of integration:
−4x3cos(x)+12x2sin(x)+24xcos(x)−24sin(x)+constant
The answer is:
−4x3cos(x)+12x2sin(x)+24xcos(x)−24sin(x)+constant
The answer (Indefinite)
[src]
/
|
| 3 3 2
| 4*x *sin(x) dx = C - 24*sin(x) - 4*x *cos(x) + 12*x *sin(x) + 24*x*cos(x)
|
/
∫4x3sin(x)dx=C−4x3cos(x)+12x2sin(x)+24xcos(x)−24sin(x)
The graph
-20*cos(1) + 12*sin(1) + 16*cos(2) + 24*sin(2)
−20cos(1)+16cos(2)+12sin(1)+24sin(2)
=
-20*cos(1) + 12*sin(1) + 16*cos(2) + 24*sin(2)
−20cos(1)+16cos(2)+12sin(1)+24sin(2)
-20*cos(1) + 12*sin(1) + 16*cos(2) + 24*sin(2)
Use the examples entering the upper and lower limits of integration.