Integral of xcos3xdx dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=cos(3x).
Then du(x)=1.
To find v(x):
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫9cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫3cos(u)du=3∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 3sin(u)
Now substitute u back in:
3sin(3x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin(3x)dx=3∫sin(3x)dx
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫9sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin(u)du=3∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −3cos(u)
Now substitute u back in:
−3cos(3x)
So, the result is: −9cos(3x)
-
Add the constant of integration:
3xsin(3x)+9cos(3x)+constant
The answer is:
3xsin(3x)+9cos(3x)+constant
The answer (Indefinite)
[src]
/
| cos(3*x) x*sin(3*x)
| x*cos(3*x)*1 dx = C + -------- + ----------
| 9 3
/
93xsin(3x)+cos(3x)
The graph
1 sin(3) cos(3)
- - + ------ + ------
9 3 9
93sin3+cos3−91
=
1 sin(3) cos(3)
- - + ------ + ------
9 3 9
−91+9cos(3)+3sin(3)
Use the examples entering the upper and lower limits of integration.