Mister Exam

Integral of xcos3xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  x*cos(3*x)*1 dx
 |                 
/                  
0                  
01xcos(3x)1dx\int\limits_{0}^{1} x \cos{\left(3 x \right)} 1\, dx
Integral(x*cos(3*x)*1, (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=xu{\left(x \right)} = x and let dv(x)=cos(3x)\operatorname{dv}{\left(x \right)} = \cos{\left(3 x \right)}.

    Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

    To find v(x)v{\left(x \right)}:

    1. Let u=3xu = 3 x.

      Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

      cos(u)9du\int \frac{\cos{\left(u \right)}}{9}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)3du=cos(u)du3\int \frac{\cos{\left(u \right)}}{3}\, du = \frac{\int \cos{\left(u \right)}\, du}{3}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)3\frac{\sin{\left(u \right)}}{3}

      Now substitute uu back in:

      sin(3x)3\frac{\sin{\left(3 x \right)}}{3}

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    sin(3x)3dx=sin(3x)dx3\int \frac{\sin{\left(3 x \right)}}{3}\, dx = \frac{\int \sin{\left(3 x \right)}\, dx}{3}

    1. Let u=3xu = 3 x.

      Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

      sin(u)9du\int \frac{\sin{\left(u \right)}}{9}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)3du=sin(u)du3\int \frac{\sin{\left(u \right)}}{3}\, du = \frac{\int \sin{\left(u \right)}\, du}{3}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)3- \frac{\cos{\left(u \right)}}{3}

      Now substitute uu back in:

      cos(3x)3- \frac{\cos{\left(3 x \right)}}{3}

    So, the result is: cos(3x)9- \frac{\cos{\left(3 x \right)}}{9}

  3. Add the constant of integration:

    xsin(3x)3+cos(3x)9+constant\frac{x \sin{\left(3 x \right)}}{3} + \frac{\cos{\left(3 x \right)}}{9}+ \mathrm{constant}


The answer is:

xsin(3x)3+cos(3x)9+constant\frac{x \sin{\left(3 x \right)}}{3} + \frac{\cos{\left(3 x \right)}}{9}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                           
 |                       cos(3*x)   x*sin(3*x)
 | x*cos(3*x)*1 dx = C + -------- + ----------
 |                          9           3     
/                                             
3xsin(3x)+cos(3x)9{{3\,x\,\sin \left(3\,x\right)+\cos \left(3\,x\right)}\over{9}}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-2
The answer [src]
  1   sin(3)   cos(3)
- - + ------ + ------
  9     3        9   
3sin3+cos3919{{3\,\sin 3+\cos 3}\over{9}}-{{1}\over{9}}
=
=
  1   sin(3)   cos(3)
- - + ------ + ------
  9     3        9   
19+cos(3)9+sin(3)3- \frac{1}{9} + \frac{\cos{\left(3 \right)}}{9} + \frac{\sin{\left(3 \right)}}{3}
Numerical answer [src]
-0.174070274713427
-0.174070274713427
The graph
Integral of xcos3xdx dx

    Use the examples entering the upper and lower limits of integration.