Mister Exam

Other calculators

Integral of sin5x*cos3x*dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(5*x)*cos(3*x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sin{\left(5 x \right)} \cos{\left(3 x \right)}\, dx$$
Integral(sin(5*x)*cos(3*x), (x, 0, 1))
The graph
The answer [src]
5    5*cos(3)*cos(5)   3*sin(3)*sin(5)
-- - --------------- - ---------------
16          16                16      
$$- \frac{3 \sin{\left(3 \right)} \sin{\left(5 \right)}}{16} - \frac{5 \cos{\left(3 \right)} \cos{\left(5 \right)}}{16} + \frac{5}{16}$$
=
=
5    5*cos(3)*cos(5)   3*sin(3)*sin(5)
-- - --------------- - ---------------
16          16                16      
$$- \frac{3 \sin{\left(3 \right)} \sin{\left(5 \right)}}{16} - \frac{5 \cos{\left(3 \right)} \cos{\left(5 \right)}}{16} + \frac{5}{16}$$
5/16 - 5*cos(3)*cos(5)/16 - 3*sin(3)*sin(5)/16
Numerical answer [src]
0.425630461249824
0.425630461249824

    Use the examples entering the upper and lower limits of integration.