Mister Exam

Integral of sin^32x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     3        
 |  sin (2*x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} \sin^{3}{\left(2 x \right)}\, dx$$
Integral(sin(2*x)^3, (x, 0, 1))
The graph
The answer [src]
                3   
1   cos(2)   cos (2)
- - ------ + -------
3     2         6   
$$\frac{\cos^{3}{\left(2 \right)}}{6} - \frac{\cos{\left(2 \right)}}{2} + \frac{1}{3}$$
=
=
                3   
1   cos(2)   cos (2)
- - ------ + -------
3     2         6   
$$\frac{\cos^{3}{\left(2 \right)}}{6} - \frac{\cos{\left(2 \right)}}{2} + \frac{1}{3}$$
1/3 - cos(2)/2 + cos(2)^3/6
Numerical answer [src]
0.52939549231561
0.52939549231561
The graph
Integral of sin^32x dx

    Use the examples entering the upper and lower limits of integration.