Mister Exam

Other calculators

Integral of ln(1+tgx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  log(1 + tan(x)) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \log{\left(\tan{\left(x \right)} + 1 \right)}\, dx$$
Integral(log(1 + tan(x)), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of a constant is the constant times the variable of integration:

    Now evaluate the sub-integral.

  2. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Rewrite the integrand:

    3. Integrate term-by-term:

      1. Don't know the steps in finding this integral.

        But the integral is

      1. Don't know the steps in finding this integral.

        But the integral is

      The result is:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Don't know the steps in finding this integral.

        But the integral is

      1. Don't know the steps in finding this integral.

        But the integral is

      The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                                                 /                                 
                              /                 |                                  
  /                          |                  |      2                           
 |                           |     x            | x*tan (x)                        
 | log(1 + tan(x)) dx = C -  | ---------- dx -  | ---------- dx + x*log(1 + tan(x))
 |                           | 1 + tan(x)       | 1 + tan(x)                       
/                            |                  |                                  
                            /                  /                                   
$$x\,\log \left(\tan x+1\right)-{{x\,\log \left({{\tan ^2x+2\,\tan x+ 1}\over{2}}\right)-{\rm atan2}\left({{\tan x+1}\over{2}} , {{\tan x+ 1}\over{2}}\right)\,\log \left(\tan ^2x+1\right)-i\,{\it li}_{2}({{i \,\left(\left(i+1\right)\,\tan x-i+1\right)}\over{2}})+i\,{\it li}_{ 2}({{i\,\left(\left(i-1\right)\,\tan x-i-1\right)}\over{2}})}\over{2 }}$$
The answer [src]
  1                   
  /                   
 |                    
 |  log(1 + tan(x)) dx
 |                    
/                     
0                     
$$-{{4\,\log \left({{\tan ^21+2\,\tan 1+1}\over{2}}\right)-\pi\,\log \left(\tan ^21+1\right)+4\,i\,{\it li}_{2}(-{{\left(i+1\right)\, \tan 1+i-1}\over{2}})-4\,i\,{\it li}_{2}({{\left(i-1\right)\,\tan 1+ i+1}\over{2}})}\over{8}}+\log \left(\tan 1+1\right)-{{i\,{\it li}_{2 }({{i+1}\over{2}})-i\,{\it li}_{2}(-{{i-1}\over{2}})}\over{2}}$$
=
=
  1                   
  /                   
 |                    
 |  log(1 + tan(x)) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \log{\left(\tan{\left(x \right)} + 1 \right)}\, dx$$
Numerical answer [src]
0.446043170167152
0.446043170167152

    Use the examples entering the upper and lower limits of integration.