Mister Exam

Other calculators

Integral of (2x+1)/((x+2)*(x-1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |      2*x + 1       
 |  --------------- dx
 |  (x + 2)*(x - 1)   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{2 x + 1}{\left(x - 1\right) \left(x + 2\right)}\, dx$$
Integral((2*x + 1)/(((x + 2)*(x - 1))), (x, 0, 1))
The answer (Indefinite) [src]
  /                                             
 |                                              
 |     2*x + 1                                  
 | --------------- dx = C + log((x + 2)*(x - 1))
 | (x + 2)*(x - 1)                              
 |                                              
/                                               
$$\int \frac{2 x + 1}{\left(x - 1\right) \left(x + 2\right)}\, dx = C + \log{\left(\left(x - 1\right) \left(x + 2\right) \right)}$$
The graph
The answer [src]
-oo - pi*I
$$-\infty - i \pi$$
=
=
-oo - pi*I
$$-\infty - i \pi$$
-oo - pi*i
Numerical answer [src]
-43.6854916781113
-43.6854916781113

    Use the examples entering the upper and lower limits of integration.