Mister Exam

Other calculators

Integral of ((2x-3)dx)/(x²-3x+2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |    2*x - 3      
 |  ------------ dx
 |   2             
 |  x  - 3*x + 2   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{2 x - 3}{\left(x^{2} - 3 x\right) + 2}\, dx$$
Integral((2*x - 3)/(x^2 - 3*x + 2), (x, 0, 1))
Detail solution
We have the integral:
  /               
 |                
 |   2*x - 3      
 | ------------ dx
 |  2             
 | x  - 3*x + 2   
 |                
/                 
Rewrite the integrand
True
or
  /                 
 |                  
 |   2*x - 3        
 | ------------ dx  
 |  2              =
 | x  - 3*x + 2     
 |                  
/                   
  
  /               
 |                
 |   2*x - 3      
 | ------------ dx
 |  2             
 | x  - 3*x + 2   
 |                
/                 
In the integral
  /               
 |                
 |   2*x - 3      
 | ------------ dx
 |  2             
 | x  - 3*x + 2   
 |                
/                 
do replacement
     2      
u = x  - 3*x
then
the integral =
  /                     
 |                      
 |   1                  
 | ----- du = log(2 + u)
 | 2 + u                
 |                      
/                       
do backward replacement
  /                                   
 |                                    
 |   2*x - 3            /     2      \
 | ------------ dx = log\2 + x  - 3*x/
 |  2                                 
 | x  - 3*x + 2                       
 |                                    
/                                     
Solution is:
       /     2      \
C + log\2 + x  - 3*x/
The answer (Indefinite) [src]
  /                                       
 |                                        
 |   2*x - 3                / 2          \
 | ------------ dx = C + log\x  - 3*x + 2/
 |  2                                     
 | x  - 3*x + 2                           
 |                                        
/                                         
$$\int \frac{2 x - 3}{\left(x^{2} - 3 x\right) + 2}\, dx = C + \log{\left(\left(x^{2} - 3 x\right) + 2 \right)}$$
The graph
The answer [src]
-oo
$$-\infty$$
=
=
-oo
$$-\infty$$
-oo
Numerical answer [src]
-44.7825031026826
-44.7825031026826

    Use the examples entering the upper and lower limits of integration.