Mister Exam

Other calculators

Integral of 2xcos(x/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |         /x\   
 |  2*x*cos|-| dx
 |         \2/   
 |               
/                
0                
$$\int\limits_{0}^{1} 2 x \cos{\left(\frac{x}{2} \right)}\, dx$$
Integral((2*x)*cos(x/2), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                          
 |        /x\               /x\          /x\
 | 2*x*cos|-| dx = C + 8*cos|-| + 4*x*sin|-|
 |        \2/               \2/          \2/
 |                                          
/                                           
$$\int 2 x \cos{\left(\frac{x}{2} \right)}\, dx = C + 4 x \sin{\left(\frac{x}{2} \right)} + 8 \cos{\left(\frac{x}{2} \right)}$$
The graph
The answer [src]
-8 + 4*sin(1/2) + 8*cos(1/2)
$$-8 + 4 \sin{\left(\frac{1}{2} \right)} + 8 \cos{\left(\frac{1}{2} \right)}$$
=
=
-8 + 4*sin(1/2) + 8*cos(1/2)
$$-8 + 4 \sin{\left(\frac{1}{2} \right)} + 8 \cos{\left(\frac{1}{2} \right)}$$
-8 + 4*sin(1/2) + 8*cos(1/2)
Numerical answer [src]
0.938362649539794
0.938362649539794

    Use the examples entering the upper and lower limits of integration.