Mister Exam

Other calculators

Integral of (1/2)*x*cos(x/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi            
  /            
 |             
 |  x    /x\   
 |  -*cos|-| dx
 |  2    \2/   
 |             
/              
-oo            
$$\int\limits_{-\infty}^{\pi} \frac{x}{2} \cos{\left(\frac{x}{2} \right)}\, dx$$
Integral((x/2)*cos(x/2), (x, -oo, pi))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  2. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    Now substitute back in:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                     
 |                                      
 | x    /x\               /x\        /x\
 | -*cos|-| dx = C + 2*cos|-| + x*sin|-|
 | 2    \2/               \2/        \2/
 |                                      
/                                       
$$\int \frac{x}{2} \cos{\left(\frac{x}{2} \right)}\, dx = C + x \sin{\left(\frac{x}{2} \right)} + 2 \cos{\left(\frac{x}{2} \right)}$$
The graph
The answer [src]
<-oo, oo>
$$\left\langle -\infty, \infty\right\rangle$$
=
=
<-oo, oo>
$$\left\langle -\infty, \infty\right\rangle$$
AccumBounds(-oo, oo)

    Use the examples entering the upper and lower limits of integration.