pi / | | x /x\ | -*cos|-| dx | 2 \2/ | / -oo
Integral((x/2)*cos(x/2), (x, -oo, pi))
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | | x /x\ /x\ /x\ | -*cos|-| dx = C + 2*cos|-| + x*sin|-| | 2 \2/ \2/ \2/ | /
<-oo, oo>
=
<-oo, oo>
AccumBounds(-oo, oo)
Use the examples entering the upper and lower limits of integration.