Mister Exam

Other calculators

Integral of [2^(tanx)]/[1+cos(2x)] dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     tan(x)      
 |    2            
 |  ------------ dx
 |  1 + cos(2*x)   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{2^{\tan{\left(x \right)}}}{\cos{\left(2 x \right)} + 1}\, dx$$
Integral(2^tan(x)/(1 + cos(2*x)), (x, 0, 1))
The answer (Indefinite) [src]
                           /          
                          |           
                          |  tan(x)   
                          | 2         
                          | ------- dx
  /                       |    2      
 |                        | cos (x)   
 |    tan(x)              |           
 |   2                   /            
 | ------------ dx = C + -------------
 | 1 + cos(2*x)                2      
 |                                    
/                                     
$$\int \frac{2^{\tan{\left(x \right)}}}{\cos{\left(2 x \right)} + 1}\, dx = C + \frac{\int \frac{2^{\tan{\left(x \right)}}}{\cos^{2}{\left(x \right)}}\, dx}{2}$$
The answer [src]
  1                
  /                
 |                 
 |     tan(x)      
 |    2            
 |  ------------ dx
 |  1 + cos(2*x)   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{2^{\tan{\left(x \right)}}}{\cos{\left(2 x \right)} + 1}\, dx$$
=
=
  1                
  /                
 |                 
 |     tan(x)      
 |    2            
 |  ------------ dx
 |  1 + cos(2*x)   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{2^{\tan{\left(x \right)}}}{\cos{\left(2 x \right)} + 1}\, dx$$
Integral(2^tan(x)/(1 + cos(2*x)), (x, 0, 1))
Numerical answer [src]
1.40175508795709
1.40175508795709

    Use the examples entering the upper and lower limits of integration.