Mister Exam

Other calculators


sqrt(x^2-9)/x

Integral of sqrt(x^2-9)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     ________   
 |    /  2        
 |  \/  x  - 9    
 |  ----------- dx
 |       x        
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\sqrt{x^{2} - 9}}{x}\, dx$$
Integral(sqrt(x^2 - 9)/x, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                        
 |                                                                         
 |    ________                                                             
 |   /  2               //   _________                                    \
 | \/  x  - 9           ||  /       2          /3\                        |
 | ----------- dx = C + |<\/  -9 + x   - 3*acos|-|  for And(x > -3, x < 3)|
 |      x               ||                     \x/                        |
 |                      \\                                                /
/                                                                          
$$\int \frac{\sqrt{x^{2} - 9}}{x}\, dx = C + \begin{cases} \sqrt{x^{2} - 9} - 3 \operatorname{acos}{\left(\frac{3}{x} \right)} & \text{for}\: x > -3 \wedge x < 3 \end{cases}$$
The graph
Numerical answer [src]
(0.0 + 132.186802412292j)
(0.0 + 132.186802412292j)
The graph
Integral of sqrt(x^2-9)/x dx

    Use the examples entering the upper and lower limits of integration.