Integral of 2^4*sin^8x dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫24sin8(x)dx=16∫sin8(x)dx
-
Rewrite the integrand:
sin8(x)=(21−2cos(2x))4
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(21−2cos(2x))4=16cos4(2x)−4cos3(2x)+83cos2(2x)−4cos(2x)+161
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫16cos4(2x)dx=16∫cos4(2x)dx
-
Rewrite the integrand:
cos4(2x)=(2cos(4x)+21)2
-
Rewrite the integrand:
(2cos(4x)+21)2=4cos2(4x)+2cos(4x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(4x)dx=4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫64cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 8x+64sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+8sin(4x)+64sin(8x)
So, the result is: 1283x+128sin(4x)+1024sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4cos3(2x))dx=−4∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
Method #2
-
Rewrite the integrand:
(1−sin2(2x))cos(2x)=−sin2(2x)cos(2x)+cos(2x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(2x)cos(2x))dx=−∫sin2(2x)cos(2x)dx
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute 2du:
∫4u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u2du=2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 6u3
Now substitute u back in:
6sin3(2x)
So, the result is: −6sin3(2x)
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
The result is: −6sin3(2x)+2sin(2x)
Method #3
-
Rewrite the integrand:
(1−sin2(2x))cos(2x)=−sin2(2x)cos(2x)+cos(2x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(2x)cos(2x))dx=−∫sin2(2x)cos(2x)dx
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute 2du:
∫4u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u2du=2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 6u3
Now substitute u back in:
6sin3(2x)
So, the result is: −6sin3(2x)
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
The result is: −6sin3(2x)+2sin(2x)
So, the result is: 24sin3(2x)−8sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫83cos2(2x)dx=83∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 163x+643sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4cos(2x))dx=−4∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −8sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫161dx=16x
The result is: 12835x+24sin3(2x)−4sin(2x)+1287sin(4x)+1024sin(8x)
Method #2
-
Rewrite the integrand:
(21−2cos(2x))4=16cos4(2x)−4cos3(2x)+83cos2(2x)−4cos(2x)+161
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫16cos4(2x)dx=16∫cos4(2x)dx
-
Rewrite the integrand:
cos4(2x)=(2cos(4x)+21)2
-
Rewrite the integrand:
(2cos(4x)+21)2=4cos2(4x)+2cos(4x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(4x)dx=4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫64cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 8x+64sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+8sin(4x)+64sin(8x)
So, the result is: 1283x+128sin(4x)+1024sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4cos3(2x))dx=−4∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
So, the result is: 24sin3(2x)−8sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫83cos2(2x)dx=83∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 163x+643sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4cos(2x))dx=−4∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −8sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫161dx=16x
The result is: 12835x+24sin3(2x)−4sin(2x)+1287sin(4x)+1024sin(8x)
So, the result is: 835x+32sin3(2x)−4sin(2x)+87sin(4x)+64sin(8x)
-
Add the constant of integration:
835x+32sin3(2x)−4sin(2x)+87sin(4x)+64sin(8x)+constant
The answer is:
835x+32sin3(2x)−4sin(2x)+87sin(4x)+64sin(8x)+constant
The answer (Indefinite)
[src]
/
| 3
| 4 8 sin(8*x) 2*sin (2*x) 7*sin(4*x) 35*x
| 2 *sin (x) dx = C - 4*sin(2*x) + -------- + ----------- + ---------- + ----
| 64 3 8 8
/
83282sin(8x)+4x+2sin(4x)+x+163(2sin(4x)+2x)−4sin(2x)−3sin3(2x)−4sin(2x)+8x
The graph
3 5
35 7 35*cos(1)*sin(1) 35*sin (1)*cos(1) 7*sin (1)*cos(1)
-- - 2*sin (1)*cos(1) - ---------------- - ----------------- - ----------------
8 8 12 3
1923sin8+168sin4+128sin32−768sin2+840
=
3 5
35 7 35*cos(1)*sin(1) 35*sin (1)*cos(1) 7*sin (1)*cos(1)
-- - 2*sin (1)*cos(1) - ---------------- - ----------------- - ----------------
8 8 12 3
−835sin(1)cos(1)−1235sin3(1)cos(1)−37sin5(1)cos(1)−2sin7(1)cos(1)+835
Use the examples entering the upper and lower limits of integration.