Mister Exam

Other calculators


e^cos(x)*sin(x)

Integral of e^cos(x)*sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |   cos(x)          
 |  E      *sin(x) dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} e^{\cos{\left(x \right)}} \sin{\left(x \right)}\, dx$$
Integral(E^cos(x)*sin(x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of the exponential function is itself.

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                                
 |  cos(x)                  cos(x)
 | E      *sin(x) dx = C - e      
 |                                
/                                 
$$\int e^{\cos{\left(x \right)}} \sin{\left(x \right)}\, dx = C - e^{\cos{\left(x \right)}}$$
The graph
The answer [src]
     cos(1)
E - e      
$$e - e^{\cos{\left(1 \right)}}$$
=
=
     cos(1)
E - e      
$$e - e^{\cos{\left(1 \right)}}$$
E - exp(cos(1))
Numerical answer [src]
1.00175612891014
1.00175612891014
The graph
Integral of e^cos(x)*sin(x) dx

    Use the examples entering the upper and lower limits of integration.