Mister Exam

Other calculators


2-x-x^2

Integral of 2-x-x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  /         2\   
 |  \2 - x - x / dx
 |                 
/                  
-2                 
$$\int\limits_{-2}^{1} \left(- x^{2} - x + 2\right)\, dx$$
Integral(2 - x - x^2, (x, -2, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                              2    3
 | /         2\                x    x 
 | \2 - x - x / dx = C + 2*x - -- - --
 |                             2    3 
/                                     
$$-{{x^3}\over{3}}-{{x^2}\over{2}}+2\,x$$
The graph
The answer [src]
9/2
$${{9}\over{2}}$$
=
=
9/2
$$\frac{9}{2}$$
Numerical answer [src]
4.5
4.5
The graph
Integral of 2-x-x^2 dx

    Use the examples entering the upper and lower limits of integration.