Mister Exam

Other calculators


1/(sin^2x*cos^2x)
  • How to use it?

  • Integral of d{x}:
  • Integral of 4x² Integral of 4x²
  • Integral of e^(-x/2) Integral of e^(-x/2)
  • Integral of (1-sin(x))/(x+cos(x)) Integral of (1-sin(x))/(x+cos(x))
  • Integral of 1/(sin^2x*cos^2x) Integral of 1/(sin^2x*cos^2x)
  • Identical expressions

  • one /(sin^2x*cos^2x)
  • 1 divide by ( sinus of squared x multiply by co sinus of e of squared x)
  • one divide by ( sinus of squared x multiply by co sinus of e of squared x)
  • 1/(sin2x*cos2x)
  • 1/sin2x*cos2x
  • 1/(sin²x*cos²x)
  • 1/(sin to the power of 2x*cos to the power of 2x)
  • 1/(sin^2xcos^2x)
  • 1/(sin2xcos2x)
  • 1/sin2xcos2x
  • 1/sin^2xcos^2x
  • 1 divide by (sin^2x*cos^2x)
  • 1/(sin^2x*cos^2x)dx

Integral of 1/(sin^2x*cos^2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |     2       2      
 |  sin (x)*cos (x)   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}\, dx$$
Integral(1/(sin(x)^2*cos(x)^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                   
 |                                    
 |        1                 2*cos(2*x)
 | --------------- dx = C - ----------
 |    2       2              sin(2*x) 
 | sin (x)*cos (x)                    
 |                                    
/                                     
$$\int \frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}\, dx = C - \frac{2 \cos{\left(2 x \right)}}{\sin{\left(2 x \right)}}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
1.3793236779486e+19
1.3793236779486e+19
The graph
Integral of 1/(sin^2x*cos^2x) dx

    Use the examples entering the upper and lower limits of integration.