Mister Exam

Factor polynomial 2-x-x^2

An expression to simplify:

The solution

You have entered [src]
         2
2 - x - x 
$$- x^{2} + \left(2 - x\right)$$
2 - x - x^2
The perfect square
Let's highlight the perfect square of the square three-member
$$- x^{2} + \left(2 - x\right)$$
To do this, let's use the formula
$$a x^{2} + b x + c = a \left(m + x\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = -1$$
$$c = 2$$
Then
$$m = \frac{1}{2}$$
$$n = \frac{9}{4}$$
So,
$$\frac{9}{4} - \left(x + \frac{1}{2}\right)^{2}$$
General simplification [src]
         2
2 - x - x 
$$- x^{2} - x + 2$$
2 - x - x^2
Factorization [src]
(x + 2)*(x - 1)
$$\left(x - 1\right) \left(x + 2\right)$$
(x + 2)*(x - 1)
Combinatorics [src]
-(-1 + x)*(2 + x)
$$- \left(x - 1\right) \left(x + 2\right)$$
-(-1 + x)*(2 + x)
Trigonometric part [src]
         2
2 - x - x 
$$- x^{2} - x + 2$$
2 - x - x^2
Rational denominator [src]
         2
2 - x - x 
$$- x^{2} - x + 2$$
2 - x - x^2
Numerical answer [src]
2.0 - x - x^2
2.0 - x - x^2
Assemble expression [src]
         2
2 - x - x 
$$- x^{2} - x + 2$$
2 - x - x^2
Common denominator [src]
         2
2 - x - x 
$$- x^{2} - x + 2$$
2 - x - x^2
Powers [src]
         2
2 - x - x 
$$- x^{2} - x + 2$$
2 - x - x^2
Combining rational expressions [src]
         2
2 - x - x 
$$- x^{2} - x + 2$$
2 - x - x^2