Mister Exam

Integral of 2-6x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  (2 - 6*x) dx
 |              
/               
0               
01(26x)dx\int\limits_{0}^{1} \left(2 - 6 x\right)\, dx
Integral(2 - 6*x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

      2dx=2x\int 2\, dx = 2 x

    1. The integral of a constant times a function is the constant times the integral of the function:

      (6x)dx=6xdx\int \left(- 6 x\right)\, dx = - 6 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 3x2- 3 x^{2}

    The result is: 3x2+2x- 3 x^{2} + 2 x

  2. Now simplify:

    x(23x)x \left(2 - 3 x\right)

  3. Add the constant of integration:

    x(23x)+constantx \left(2 - 3 x\right)+ \mathrm{constant}


The answer is:

x(23x)+constantx \left(2 - 3 x\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                       2      
 | (2 - 6*x) dx = C - 3*x  + 2*x
 |                              
/                               
(26x)dx=C3x2+2x\int \left(2 - 6 x\right)\, dx = C - 3 x^{2} + 2 x
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
-1
1-1
=
=
-1
1-1
-1
Numerical answer [src]
-1.0
-1.0

    Use the examples entering the upper and lower limits of integration.