Mister Exam

Other calculators


2/(x^2+1)

Integral of 2/(x^2+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |    2      
 |  ------ dx
 |   2       
 |  x  + 1   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{2}{x^{2} + 1}\, dx$$
Integral(2/(x^2 + 1), (x, 0, 1))
Detail solution
We have the integral:
  /         
 |          
 |   2      
 | ------ dx
 |  2       
 | x  + 1   
 |          
/           
Rewrite the integrand
            /2\   
            |-|   
  2         \1/   
------ = ---------
 2           2    
x  + 1   (-x)  + 1
or
  /           
 |            
 |   2        
 | ------ dx  
 |  2        =
 | x  + 1     
 |            
/             
  
    /            
   |             
   |     1       
2* | --------- dx
   |     2       
   | (-x)  + 1   
   |             
  /              
In the integral
    /            
   |             
   |     1       
2* | --------- dx
   |     2       
   | (-x)  + 1   
   |             
  /              
do replacement
v = -x
then
the integral =
    /                     
   |                      
   |   1                  
2* | ------ dv = 2*atan(v)
   |      2               
   | 1 + v                
   |                      
  /                       
do backward replacement
    /                        
   |                         
   |     1                   
2* | --------- dx = 2*atan(x)
   |     2                   
   | (-x)  + 1               
   |                         
  /                          
Solution is:
C + 2*atan(x)
The answer (Indefinite) [src]
  /                         
 |                          
 |   2                      
 | ------ dx = C + 2*atan(x)
 |  2                       
 | x  + 1                   
 |                          
/                           
$$\int \frac{2}{x^{2} + 1}\, dx = C + 2 \operatorname{atan}{\left(x \right)}$$
The graph
The answer [src]
pi
--
2 
$$\frac{\pi}{2}$$
=
=
pi
--
2 
$$\frac{\pi}{2}$$
pi/2
Numerical answer [src]
1.5707963267949
1.5707963267949
The graph
Integral of 2/(x^2+1) dx

    Use the examples entering the upper and lower limits of integration.