1 / | | 2 | ------ dx | 2 | x - 1 | / 0
Integral(2/(x^2 - 1), (x, 0, 1))
The integral of a constant times a function is the constant times the integral of the function:
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=-1, context=1/(x**2 - 1), symbol=x), False), (ArccothRule(a=1, b=1, c=-1, context=1/(x**2 - 1), symbol=x), x**2 > 1), (ArctanhRule(a=1, b=1, c=-1, context=1/(x**2 - 1), symbol=x), x**2 < 1)], context=1/(x**2 - 1), symbol=x)
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | // 2 \ | 2 ||-acoth(x) for x > 1| | ------ dx = C + 2*|< | | 2 || 2 | | x - 1 \\-atanh(x) for x < 1/ | /
Use the examples entering the upper and lower limits of integration.