Integral of 2/(x^2-1) dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫x2−12dx=2∫x2−11dx
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=-1, context=1/(x**2 - 1), symbol=x), False), (ArccothRule(a=1, b=1, c=-1, context=1/(x**2 - 1), symbol=x), x**2 > 1), (ArctanhRule(a=1, b=1, c=-1, context=1/(x**2 - 1), symbol=x), x**2 < 1)], context=1/(x**2 - 1), symbol=x)
So, the result is: 2({−acoth(x)−atanh(x)forx2>1forx2<1)
-
Now simplify:
{−2acoth(x)−2atanh(x)forx2>1forx2<1
-
Add the constant of integration:
{−2acoth(x)−2atanh(x)forx2>1forx2<1+constant
The answer is:
{−2acoth(x)−2atanh(x)forx2>1forx2<1+constant
The answer (Indefinite)
[src]
/
| // 2 \
| 2 ||-acoth(x) for x > 1|
| ------ dx = C + 2*|< |
| 2 || 2 |
| x - 1 \\-atanh(x) for x < 1/
|
/
∫x2−12dx=C+2({−acoth(x)−atanh(x)forx2>1forx2<1)
The graph
−∞−iπ
=
−∞−iπ
Use the examples entering the upper and lower limits of integration.