Mister Exam

Other calculators


(2/3)^x

Integral of (2/3)^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1        
  /        
 |         
 |     x   
 |  2/3  dx
 |         
/          
0          
$$\int\limits_{0}^{1} \left(\frac{2}{3}\right)^{x}\, dx$$
Integral((2/3)^x, (x, 0, 1))
Detail solution
  1. The integral of an exponential function is itself divided by the natural logarithm of the base.

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                      
 |                    x  
 |    x            2/3   
 | 2/3  dx = C + --------
 |               log(2/3)
/                        
$$\int \left(\frac{2}{3}\right)^{x}\, dx = \frac{\left(\frac{2}{3}\right)^{x}}{\log{\left(\frac{2}{3} \right)}} + C$$
The graph
The answer [src]
        -1          
--------------------
3*(-log(3) + log(2))
$$- \frac{1}{3 \left(- \log{\left(3 \right)} + \log{\left(2 \right)}\right)}$$
=
=
        -1          
--------------------
3*(-log(3) + log(2))
$$- \frac{1}{3 \left(- \log{\left(3 \right)} + \log{\left(2 \right)}\right)}$$
-1/(3*(-log(3) + log(2)))
Numerical answer [src]
0.822101154125477
0.822101154125477
The graph
Integral of (2/3)^x dx

    Use the examples entering the upper and lower limits of integration.