Integral of 1/(x^2-2) dx
The solution
Detail solution
-
Rewrite the integrand:
1⋅x2−21=42(−x+21+x−21)
-
The integral of a constant times a function is the constant times the integral of the function:
∫42(−x+21+x−21)dx=42∫(−x+21+x−21)dx
-
Integrate term-by-term:
-
The integral of x−21 is log(x−2).
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x+21)dx=−∫x+21dx
-
The integral of x+21 is log(x+2).
So, the result is: −log(x+2)
The result is: log(x−2)−log(x+2)
So, the result is: 42(log(x−2)−log(x+2))
-
Add the constant of integration:
42(log(x−2)−log(x+2))+constant
The answer is:
42(log(x−2)−log(x+2))+constant
The answer (Indefinite)
[src]
/
| ___ / / ___\ / ___\\
| 1 \/ 2 *\- log\x + \/ 2 / + log\x - \/ 2 //
| 1*------ dx = C + -----------------------------------------
| 2 4
| x - 2
|
/
223log(2x+2232x−223)
The graph
___ / / ___\\ ___ / ___\ ___ / / ___\\ ___ / ___\
\/ 2 *\pi*I + log\\/ 2 // \/ 2 *log\1 + \/ 2 / \/ 2 *\pi*I + log\-1 + \/ 2 // \/ 2 *log\\/ 2 /
- ------------------------- - -------------------- + ------------------------------ + ----------------
4 4 4 4
223log(3−223)
=
___ / / ___\\ ___ / ___\ ___ / / ___\\ ___ / ___\
\/ 2 *\pi*I + log\\/ 2 // \/ 2 *log\1 + \/ 2 / \/ 2 *\pi*I + log\-1 + \/ 2 // \/ 2 *log\\/ 2 /
- ------------------------- - -------------------- + ------------------------------ + ----------------
4 4 4 4
−42log(1+2)+42log(2)−42(log(2)+iπ)+42(log(−1+2)+iπ)
Use the examples entering the upper and lower limits of integration.