Mister Exam

Other calculators


1/(x^2-2)

Integral of 1/(x^2-2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |      1      
 |  1*------ dx
 |     2       
 |    x  - 2   
 |             
/              
0              
0111x22dx\int\limits_{0}^{1} 1 \cdot \frac{1}{x^{2} - 2}\, dx
Integral(1/(x^2 - 1*2), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    11x22=24(1x+2+1x2)1 \cdot \frac{1}{x^{2} - 2} = \frac{\sqrt{2}}{4} \left(- \frac{1}{x + \sqrt{2}} + \frac{1}{x - \sqrt{2}}\right)

  2. The integral of a constant times a function is the constant times the integral of the function:

    24(1x+2+1x2)dx=2(1x+2+1x2)dx4\int \frac{\sqrt{2}}{4} \left(- \frac{1}{x + \sqrt{2}} + \frac{1}{x - \sqrt{2}}\right)\, dx = \frac{\sqrt{2} \int \left(- \frac{1}{x + \sqrt{2}} + \frac{1}{x - \sqrt{2}}\right)\, dx}{4}

    1. Integrate term-by-term:

      1. The integral of 1x2\frac{1}{x - \sqrt{2}} is log(x2)\log{\left(x - \sqrt{2} \right)}.

      1. The integral of a constant times a function is the constant times the integral of the function:

        (1x+2)dx=1x+2dx\int \left(- \frac{1}{x + \sqrt{2}}\right)\, dx = - \int \frac{1}{x + \sqrt{2}}\, dx

        1. The integral of 1x+2\frac{1}{x + \sqrt{2}} is log(x+2)\log{\left(x + \sqrt{2} \right)}.

        So, the result is: log(x+2)- \log{\left(x + \sqrt{2} \right)}

      The result is: log(x2)log(x+2)\log{\left(x - \sqrt{2} \right)} - \log{\left(x + \sqrt{2} \right)}

    So, the result is: 2(log(x2)log(x+2))4\frac{\sqrt{2} \left(\log{\left(x - \sqrt{2} \right)} - \log{\left(x + \sqrt{2} \right)}\right)}{4}

  3. Add the constant of integration:

    2(log(x2)log(x+2))4+constant\frac{\sqrt{2} \left(\log{\left(x - \sqrt{2} \right)} - \log{\left(x + \sqrt{2} \right)}\right)}{4}+ \mathrm{constant}


The answer is:

2(log(x2)log(x+2))4+constant\frac{\sqrt{2} \left(\log{\left(x - \sqrt{2} \right)} - \log{\left(x + \sqrt{2} \right)}\right)}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                           
 |                     ___ /     /      ___\      /      ___\\
 |     1             \/ 2 *\- log\x + \/ 2 / + log\x - \/ 2 //
 | 1*------ dx = C + -----------------------------------------
 |    2                                  4                    
 |   x  - 2                                                   
 |                                                            
/                                                             
log(2x2322x+232)232{{\log \left({{2\,x-2^{{{3}\over{2}}}}\over{2\,x+2^{{{3}\over{2}}} }}\right)}\over{2^{{{3}\over{2}}}}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1.50.0
The answer [src]
    ___ /          /  ___\\     ___    /      ___\     ___ /          /       ___\\     ___    /  ___\
  \/ 2 *\pi*I + log\\/ 2 //   \/ 2 *log\1 + \/ 2 /   \/ 2 *\pi*I + log\-1 + \/ 2 //   \/ 2 *log\\/ 2 /
- ------------------------- - -------------------- + ------------------------------ + ----------------
              4                        4                           4                         4        
log(3232)232{{\log \left(3-2^{{{3}\over{2}}}\right)}\over{2^{{{3}\over{2}}}}}
=
=
    ___ /          /  ___\\     ___    /      ___\     ___ /          /       ___\\     ___    /  ___\
  \/ 2 *\pi*I + log\\/ 2 //   \/ 2 *log\1 + \/ 2 /   \/ 2 *\pi*I + log\-1 + \/ 2 //   \/ 2 *log\\/ 2 /
- ------------------------- - -------------------- + ------------------------------ + ----------------
              4                        4                           4                         4        
2log(1+2)4+2log(2)42(log(2)+iπ)4+2(log(1+2)+iπ)4- \frac{\sqrt{2} \log{\left(1 + \sqrt{2} \right)}}{4} + \frac{\sqrt{2} \log{\left(\sqrt{2} \right)}}{4} - \frac{\sqrt{2} \left(\log{\left(\sqrt{2} \right)} + i \pi\right)}{4} + \frac{\sqrt{2} \left(\log{\left(-1 + \sqrt{2} \right)} + i \pi\right)}{4}
Numerical answer [src]
-0.623225240140231
-0.623225240140231
The graph
Integral of 1/(x^2-2) dx

    Use the examples entering the upper and lower limits of integration.