Mister Exam

Other calculators

Integral of 2/(sqrt(x^2+4x+3)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |          2           
 |  ----------------- dx
 |     ______________   
 |    /  2              
 |  \/  x  + 4*x + 3    
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{2}{\sqrt{\left(x^{2} + 4 x\right) + 3}}\, dx$$
Integral(2/sqrt(x^2 + 4*x + 3), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               /                    
 |                               |                     
 |         2                     |         1           
 | ----------------- dx = C + 2* | ----------------- dx
 |    ______________             |    ______________   
 |   /  2                        |   /  2              
 | \/  x  + 4*x + 3              | \/  x  + 4*x + 3    
 |                               |                     
/                               /                      
$$\int \frac{2}{\sqrt{\left(x^{2} + 4 x\right) + 3}}\, dx = C + 2 \int \frac{1}{\sqrt{\left(x^{2} + 4 x\right) + 3}}\, dx$$
The answer [src]
    1                       
    /                       
   |                        
   |           1            
2* |  ------------------- dx
   |    _______   _______   
   |  \/ 1 + x *\/ 3 + x    
   |                        
  /                         
  0                         
$$2 \int\limits_{0}^{1} \frac{1}{\sqrt{x + 1} \sqrt{x + 3}}\, dx$$
=
=
    1                       
    /                       
   |                        
   |           1            
2* |  ------------------- dx
   |    _______   _______   
   |  \/ 1 + x *\/ 3 + x    
   |                        
  /                         
  0                         
$$2 \int\limits_{0}^{1} \frac{1}{\sqrt{x + 1} \sqrt{x + 3}}\, dx$$
2*Integral(1/(sqrt(1 + x)*sqrt(3 + x)), (x, 0, 1))
Numerical answer [src]
0.891578554228539
0.891578554228539

    Use the examples entering the upper and lower limits of integration.