Mister Exam

Other calculators

Integral of 12*ctg(3*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi               
 --               
 6                
  /               
 |                
 |  12*cot(3*x) dx
 |                
/                 
pi                
--                
12                
π12π612cot(3x)dx\int\limits_{\frac{\pi}{12}}^{\frac{\pi}{6}} 12 \cot{\left(3 x \right)}\, dx
Integral(12*cot(3*x), (x, pi/12, pi/6))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    12cot(3x)dx=12cot(3x)dx\int 12 \cot{\left(3 x \right)}\, dx = 12 \int \cot{\left(3 x \right)}\, dx

    1. Rewrite the integrand:

      cot(3x)=cos(3x)sin(3x)\cot{\left(3 x \right)} = \frac{\cos{\left(3 x \right)}}{\sin{\left(3 x \right)}}

    2. There are multiple ways to do this integral.

      Method #1

      1. Let u=sin(3x)u = \sin{\left(3 x \right)}.

        Then let du=3cos(3x)dxdu = 3 \cos{\left(3 x \right)} dx and substitute du3\frac{du}{3}:

        13udu\int \frac{1}{3 u}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          1udu=1udu3\int \frac{1}{u}\, du = \frac{\int \frac{1}{u}\, du}{3}

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          So, the result is: log(u)3\frac{\log{\left(u \right)}}{3}

        Now substitute uu back in:

        log(sin(3x))3\frac{\log{\left(\sin{\left(3 x \right)} \right)}}{3}

      Method #2

      1. Let u=3xu = 3 x.

        Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

        cos(u)3sin(u)du\int \frac{\cos{\left(u \right)}}{3 \sin{\left(u \right)}}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(u)sin(u)du=cos(u)sin(u)du3\int \frac{\cos{\left(u \right)}}{\sin{\left(u \right)}}\, du = \frac{\int \frac{\cos{\left(u \right)}}{\sin{\left(u \right)}}\, du}{3}

          1. Let u=sin(u)u = \sin{\left(u \right)}.

            Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

            1udu\int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            Now substitute uu back in:

            log(sin(u))\log{\left(\sin{\left(u \right)} \right)}

          So, the result is: log(sin(u))3\frac{\log{\left(\sin{\left(u \right)} \right)}}{3}

        Now substitute uu back in:

        log(sin(3x))3\frac{\log{\left(\sin{\left(3 x \right)} \right)}}{3}

    So, the result is: 4log(sin(3x))4 \log{\left(\sin{\left(3 x \right)} \right)}

  2. Add the constant of integration:

    4log(sin(3x))+constant4 \log{\left(\sin{\left(3 x \right)} \right)}+ \mathrm{constant}


The answer is:

4log(sin(3x))+constant4 \log{\left(\sin{\left(3 x \right)} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                    
 |                                     
 | 12*cot(3*x) dx = C + 4*log(sin(3*x))
 |                                     
/                                      
12cot(3x)dx=C+4log(sin(3x))\int 12 \cot{\left(3 x \right)}\, dx = C + 4 \log{\left(\sin{\left(3 x \right)} \right)}
The graph
0.2750.3000.3250.3500.3750.4000.4250.4500.4750.50020-10
The answer [src]
      /  ___\
      |\/ 2 |
-4*log|-----|
      \  2  /
4log(22)- 4 \log{\left(\frac{\sqrt{2}}{2} \right)}
=
=
      /  ___\
      |\/ 2 |
-4*log|-----|
      \  2  /
4log(22)- 4 \log{\left(\frac{\sqrt{2}}{2} \right)}
-4*log(sqrt(2)/2)
Numerical answer [src]
1.38629436111989
1.38629436111989

    Use the examples entering the upper and lower limits of integration.